

Booklet of Cases

OCTOBER 2025

About this booklet

The **SB COP Bioeconomy** Working Group was created with a clear mission: to secure the enduring recognition and importance of the bioeconomy in the COP process. Our purpose has been to bring together actors across finance, policy, and business, identify the bottlenecks holding back scalable adoption, and to demonstrate that solutions to unlock the bioeconomy at scale exist

This Booklet showcases many of these solutions, reflecting the priorities of our Bioeconomy Working Group:

- (1) Fostering convergence across the three Rio Conventions and ICCPR¹
- (2) Positioning the bioeconomy as a strategic pillar, mobilizing finance and technology

What makes them powerful is not just novelty, but replicability. They create jobs, strengthen livelihoods, protect ecosystems, and build resilient economies, all while addressing emissions, biodiversity loss, ecosystem degradation, and human rights challenges. Above all, they are scalable; if adopted widely, they could redefine how societies and economies interact with nature

The cases presented here are not an end point, but the beginning of a living library. They represent the first chapter of a bank of solutions that SB COP will continue to build and expand through future COPs. Over just five months, our Bioeconomy Working Group has mobilized over 30 institutions and more than 50 private-sector cases that prove the bioeconomy is not only actionable, but also transformative

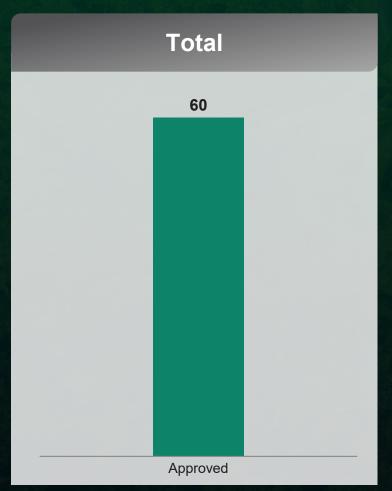
We hope you will find inspiration in these cases, and that they spark new ideas, partnerships, and action at the scale the world needs

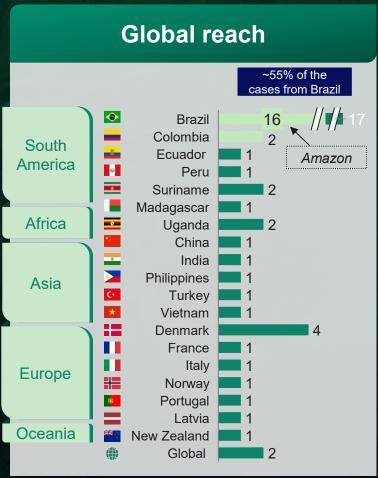
Criteria for cases

The SB COP launched a global call for cases to identify practical, scalable solutions that advance the goals of bioeconomy. The response was overwhelming: dozens of submissions came from corporates, investors and NGOs across the world

From this pool, we applied a clear set of criteria to curate the portfolio featured here

- Working Group alignment: relevance to our vision of bioeconomy aligned with the core priorities of the Working Group Showcasing solutions for climate, biodiversity, ecosystems and communities, mobilizing finance, and developing technologies
- **Economic impact:** potential to generate sustainable jobs, livelihoods, and economic activity, while enabling private-sector profitability through proven returns or affordable cost structures
- **CO₂ impact:** potential to reduce or avoid emissions, restore ecosystems, or enable adaptation to climate change
- Innovation: introduction of innovative products, services, business models, or partnerships that unlock bottlenecks preventing bioeconomy to scale
- 5 Scalability: ability to expand beyond pilots and replicate across geographies and sectors





Overview of Cases

Bioeconomy Working Group has received 59 cases from different regions and bioeconomy types

Bioeconomy cases can be clustered into 3 strategic archetypes

Innovation models

Development of novel biobased products, processes, or technologies

Transition models

Transformation of production systems and supply chains

Enablers

Approaches in finance, policy, or technology to scale bioeconomy

Cases highlights at a glance

Priority 1

Bioeconomy as a solution for climate, biodiversity, land use and human rights

Transition models

For over 9 types of distinct products

 Palm oil, Coffee, Açaí, Coconut, Vanilla, Peat, Castor crop, Rambutan, Rubber

Solutions could be scaled to +79M hectares¹

Innovation models

Moving downstream

NZ indigenous skincare treatment; banana-waste biotextiles;
 Amazon superfoods & beverages; Amazon-sourced biocosmetics;
 Carnauba wax for coating; exploitation of microalgae

17 Enablers

To help transition

- Tech-driven platforms
- Restoration & carbon removal programs
- Sustainable waste treatment & circularity mechanisms

Priority 2 Finance

Mobilizing Climate finance

6 Enablers

To mobilize climate finance

- Sustainable debt instruments
- Tradable certificate, schemes & PES³
- Sustainable investment funds
- Blended finance instruments
- + US\$ 2 billion dollar of planned budget for financing bioeconomy²

Priority 2
Tech

Leveraging
Technology in bioeconomy

Innovation models

10 From advanced bioeconomy to high-tech

- Bio-based chemicals to substitute fossil chemicals
- Strain engineering to improve process and performance

7 Enablers

To help transition

- Use of Al and databases
- Use of IoT and drones

^{1.} Hectare estimates are derived from the global harvested area of nine plantation types worldwide; 2. Figure reflects the sum of planned budgets submitted by the 20 cases; 3. Payments for Ecosystem Services Source: BCG analysis; FAOSTAT

Extended list of 70 cases; aligned with Bioeconomy WG Priorities

A4F—Industrial exploitation of microalgae	Oceanpact—Mangrove conservation
AJE — Amayu superfruits	Sanctu—Amazon regeneration platfor
BASF— Cocli palm oil	Sutas—Circular Bioeconomy Project
BASF— Mataviva	Symrise—Bridging the gap Amazon
BASF— Pragati project	Symrise—Bridging the gap coconut
BASF—Sustainable rambutan	Symrise—Bridging the gap vanilla
Beraca by Clariant — Sociobiodiversity prog.	TCP—Troca solidária
Binatural — Baru nut shell	
Busitema University — Banatex-EA	
Caatinga association — Caatinga model	
Genera—Genera bioeconomia	
Hikurangi Bioactives—Kanuka oil	
IFC—Coffee revival Uganda	
Inst. Interelos—Arc of Biodiversity Açaí	
La Flora—Kaigu peat bog	
Michelin—Together for the Amazon	
Natura—Agroforestry system for palm oil	

Priority 2 – Finance
Capitals Coalition—China Shengmu assessment
CNP Seguradora—Amazon connection
Dengo—Credit for life
Earthly Treasure—Tradable biodiversity units
GSS—Showcase of the Brazilian biodiversity
IDB—Amazon bioeconomy fund
IDB—Credit line BB Amazônia
IDB—Loan program MSMEs Suriname
IFC—Loan w/ biodiversity UoP
IFC—TIG reforestation fund
IFC/Natura—Amazônia Viva
Morphosis—Terrasos PPP Model
SWEN Capital—Blue Ocean Fund
Terrasos—Biodiversity units pilot
Vale—AMAZ Impact accelerator
Vale—Sustenta.bio
Zurich Insurance Group—Bioeconomy in action

Priority 2 – Tech
ABIFINA—Monitoring patents w/ biodiversity
Bioverse—Geospatial intelligence
Borregaard—Advanced Lignin biochemicals
Braskem—I'm green
Givaudan—Sustainable Hyaluronic Acid
KAA TECH—AçaíBot
Natura—Greenventory
Nestlé—More intelligence, more cocoa
Novamont—Circular bioeconomy
Novonesis—From CO2 to protein
Novonesis—Healthier feeds at lower cost
Novonesis—Less waste, more taste
Novonesis—The hot topic of cold wash
Siemens—Tech4Amazonia
UFMG—Long-term bio
Vale—Jornada Amazônia platform
Volkswagen—Sugarcane plastics truck parts

Portfolio of Cases (I/VII)

Case name	Priority	Case objective	Page
Industrial exploitation of microalgae	Priority 1	• Industrial exploitation of microalgae, in co-location with a chemical plant facility, recyclingo CO_2 and effluents into biomass	<u>25</u>
Amayu superfruits	Priority 1	 Amazonian superfruits (e.g., aguaje, camu camu, aguaymanto, açaí) for beverages and shots 	<u>26</u>
Cocli palm oil	Priority 1	Sustainable palm oil production with training and fair labor practices	<u>27</u>
Mataviva	Priority 1	 Flagship initiative for forest restoration, improving water and soil, fostering biodiversity and supporting climate goals via carbon sequestration 	<u>28</u>
Pragati project	Priority 1	 Sustainable castor crop production, improving agricultural practices and ensuring responsible sourcing in the world's leading production region 	<u>18</u>
Sustainable rambutan	Priority 1	 Implementation of certified sustainable farming practices for organically grown rambutan and its by-products used as renewable feedstocks in the production of cosmetic ingredients 	<u>29</u>
Sociobiodiversity program	Priority 1	 Promote socioeconomic inclusion for agroextractive producers and biodiversity conservation through the bioeconomy, inspiring sustainable actions aligned with the COP30 climate agenda 	<u>30</u>
Baru nut shell	Priority 1	Replace firewood with agroforestry waste (baru nut shells) as renewable biomass	<u>31</u>
Banatex-EA	Priority 1	 Transforming banana stem waste into textiles, energy, and fertilizer; creating jobs and reducing pollution 	<u>32</u>
	Industrial exploitation of microalgae Amayu superfruits Cocli palm oil Mataviva Pragati project Sustainable rambutan Sociobiodiversity program Baru nut shell	Industrial exploitation of microalgae Amayu superfruits Priority 1 Cocli palm oil Priority 1 Mataviva Priority 1 Pragati project Priority 1 Sustainable rambutan Priority 1 Sociobiodiversity program Priority 1 Baru nut shell Priority 1	Industrial exploitation of microalgae Priority 1 Industrial exploitation of microalgae, in co-location with a chemical plant facility, recyclingo CO ₂ and effluents into biomass Amayu superfruits Priority 1 Amazonian superfruits (e.g., aguaje, camu camu, aguaymanto, açal) for beverages and shots Cocli palm oil Priority 1 Sustainable palm oil production with training and fair labor practices Mataviva Priority 1 Flagship initiative for forest restoration, improving water and soil, fostering biodiversity and supporting climate goals via carbon sequestration Pragati project Priority 1 Sustainable castor crop production, improving agricultural practices and ensuring responsible sourcing in the world's leading production region Implementation of certified sustainable farming practices for organically grown rambutan and its by-products used as renewable feedstocks in the production of cosmetic ingredients Priority 1 Priority 1 Promote socioeconomic inclusion for agroextractive producers and biodiversity conservation through the bioeconomy, inspiring sustainable actions aligned with the COP30 climate agenda Priority 1 Replace firewood with agroforestry waste (baru nut shells) as renewable biomass Transforming banana stem waste into textiles, energy, and fertilizer; creating jobs and

Portfolio of Cases (II/VII)

Company name	Case name	Priority	Case objective	Page
Caatinga association	Caatinga model	Priority 1	 Integrate bioeconomy and ecological restoration with innovative, replicable solutions aligned with global climate goals 	<u>33</u>
Genera	Genera bioeconomia	Priority 1	 Restoration of degraded land with native species using circular inputs (wastewater sludge and rock dust), generating agroforestry products and ARR/ERW carbon credits 	<u>34</u>
Hikurangi Bioactives	Kanuka oil for eczema	Priority 1	 Proven natural eczema treatment, that supports Maori communities, protects ecosystems, and models ethical biocommerce through Indigenous-led innovation and benefit-sharing 	<u>35</u>
IFC	Coffee revival Uganda	Priority 1	 Revitalization and expansion of coffee production through climate-smart agricultural practices, increasing farmer incomes and advancing gender equality 	<u>36</u>
Inst. Interelos	Arc of Biodiversity Açaí hubs	Priority 1	 Create productive hubs across the Amazon—anchored in sustainably managed açaí—that form a "Biodiversity Arc" to curb deforestation while diversifying value chains and household income 	<u>37</u>
La Flora	Kaigu peat bog	Priority 1	 Restore forests and raise farm productivity with agroforestry systems (SAFs) and improved grazing, combining conservation and income for resilient, low-carbon farming in the Amazon 	<u>38</u>
Michelin	Together for the Amazon	Priority 1	 Transformation of former peat extraction site into a Green Industrial Zone that combines wind energy, peatland restoration, and sustainable industry 	<u>39</u>
Natura	Agroforestry system for palm oil	Priority 1	 Transformation of former peat extraction site into a Green Industrial Zone that combines wind energy, peatland restoration, and sustainable industry 	<u>22</u>

Portfolio of Cases (III/VII)

Company name	Case name	Priority	Case objective	Page
Natura	Amazonian bioactives	Priority 1	 Low-cost IoT devices for remote bioactive drying and AI-powered drones for precise, low-cost forest inventory 	<u>40</u>
Oceanpact	Mangrove conservation w/ bees	Priority 1	 Promote mangrove conservation and community resilience through meliponiculture, combining research and bioeconomy in Quilombo of Feital 	<u>41</u>
Sanctu	Amazon regeneration platform	Priority 1	Technology-driven platform for design, financing, support, and market access to regenerate degraded Amazon land, helping farmers adopt sustainable practices	23
Sutas	Circular Bioeconomy Project	Priority 1	 Establish a food –energy–waste–soil nexus, linking agriculture, renewable energy, waste management, and soil regeneration into one integrated system 	<u>42</u>
Symrise	Bridging the gap Amazon	Priority 1	 Community-led consolidation of Amazon value chains (Brazil nuts, açaí, cupuaçu, andiroba, copaíba, among others), reducing waste and transport through local pre- processing 	<u>43</u>
Symrise	Bridging the gap coconut	Priority 1	 Coconut-growing community empowerment through regenerative agriculture, diversified income streams, and farm productivity increase 	44
Symrise	Bridging the gap vanilla	Priority 1	 Vanilla-growing community empowerment through regenerative agriculture, diversified income streams, and child protection measures 	<u>45</u>
TCP	Troca solidária	Priority 1	 Recyclable waste is exchanged for food and hygiene items to improve food security and ensure the proper disposal of over 570 tons of waste 	<u>46</u>

Portfolio of Cases (IV/VII)

Company name	Case name	Priority	Case objective	Page
Capitals Coalition	China Shengmu assessment	Priority 2- Finance	 Measure and value Shengmu's impacts and dependencies across natural, social, human, and produced capitals to improve decision-making, investment, and well- being 	<u>48</u>
CNP Seguradora	Amazon connection	Priority 2- Finance	 Strengthening sustainable production chains in Amazonas with five community associations 	<u>49</u>
Dengo	Credit for life	Priority 2- Finance	 Implement a results-based scheme (PCSAF) to remunerate environmental services in cabruca cocoa systems, with continuous MRV and an outcome-based financing structure 	<u>19</u>
Earthly Treasure	Tradable biodiversity units	Priority 2- Finance	 Scalable, IPLC-led finance mechanism that monetizes ecosystem stewardship via tradable Biodiversity Units (BUs), anchoring private portfolios in a nature-positive asset class 	<u>50</u>
GSS	Showcase of the Brazilian biodiversity	Priority 2- Finance	 Connect socio-biodiversity projects with corporate sponsors through an online platform that ensures compliance, transparent monitoring, and measurable impact 	<u>51</u>
IDB	Amazon bioeconomy fund	Priority 2- Finance	 Multi-country investment fund that mobilizes private and public capital to support innovative bio-businesses in Amazonia 	<u>52</u>
IDB	Credit line BB Amazônia	Priority 2- Finance	 Credit program to expand financing for bio-businesses and sustainable infrastructure across bioeconomy value chains in Brazil's Legal Amazon 	<u>53</u>
IDB	Loan program MSMEs Suriname	Priority 2- Finance	Credit and technical assistance program to expand MSME2 access to productive investments, with emphasis on bio-businesses	<u>54</u>
IFC	Loan w/ biodiversity UoP	Priority 2- Finance	 Loan to support Produbanco's on-lending for SMEs biodiversity-focused projects stimulating economic activity, creating jobs, and protecting Ecuador's natural resources 	<u>55</u>

Portfolio of Cases (V/VII)

Company name	Case name	Priority	Case objective	Page
IFC	TIG reforestation fund	Priority 2- Finance	 Sustainability-linked loan provided by IFC to support the BTG Pactual Timberland Investment Group's Latin America Reforestation Strategy 	<u>56</u>
IFC/Natura	Amazônia Viva	Priority 2- Finance	 Blended finance instrument to improve credit access for sustainable agro-extractive producers 	<u>57</u>
Morphosis	Terrasos PPP Model	Priority 2- Finance	 Demonstrate how long-term adaptation and ecosystem resilience can be financed entirely through private capital using a biodiversity credit model anchored in national compliance 	<u>21</u>
SWEN Capital	Blue Ocean Fund	Priority 2- Finance	 Support early-stage companies delivering ocean-related climate and biodiversity innovations through equity investments with performance-linked impact metrics 	<u>59</u>
Terrasos	Biodiversity units pilot	Priority 2- Finance	 Biodiversity habitat bank to generate and sell certified biodiversity units through community partnerships, private investment, and tech-enabled monitoring 	<u>60</u>
Vale	AMAZ Impact accelerator	Priority 2- Finance	 Accelerator program for impact businesses in the Amazon to develop sustainable solutions for the sociobioeconomy 	<u>61</u>
Vale	Sustenta.bio	Priority 2- Finance	 Multi-stakeholder initiative funded through philanthropic grants to strengthen sociobiodiversity production in Amazon protected areas 	<u>62</u>
Zurich Insurance Group	Bioeconomy in action	Priority 2- Finance	 Corporate strategy to achieve net-zero operations by 2030 by investing in early, science-based carbon removal (CDR) solutions, funded through an internal carbon price 	<u>63</u>

Portfolio of Cases (VI/VII)

Company name	Case name	Priority		Case objective	Page
ABIFINA	Monitoring patents w/ biodiversity	Priority 2 Tech		Database with Brazilian patents for medicines using native and exotic biodiversity as active ingredients, identifying patent holders, species used, and their applications	<u>64</u>
Bioverse	Geospatial intelligence	Priority 2 Tech	•	Geospatial intelligence tools to help forest cooperatives harvest and sell non-timber forest products	<u>65</u>
Borregaard	Advanced Lignin for biochemicals	Priority 2 Tech	•	Borregaard ASA's biorefinery turning wood waste into sustainable biochemicals that replace petroleum products across multiple industries	<u>66</u>
Braskem	l'm green	Priority 2 Tech	•	Bio-based polyethylene and expanded portfolio of plant-based chemicals, which deliver fossil-equivalent performance, using sugarcane ethanol	<u>67</u>
Givaudan	Sustainable Hyaluronic Acid	Priority 2 Tech	•	Strain engineering, precision fermentation and process optimization to deliver low-impact Hyaluronic Acid production	<u>20</u>
KAA TECH	AçaíBot	Priority 2 Tech	•	Low-cost, portable robot ("AçaíBot") that climbs palms, cuts and collects açaí clusters to increase yields and incomes	<u>68</u>
Natura	Greenventory	Priority 2 Tech	•	Transform the native tucumã palm into a bioeconomy asset by building a sustainable value chain that supplies high-performance cosmetic ingredients	<u>69</u>
Nestlé	More intelligence, more cocoa	Priority 2 Tech	•	Chatbot providing free technical assistance 24/7 for farmers as part of Nestlé sustainability initiative, which works with 100 cocoa farms to boost productivity and profitability	<u>70</u>
Novamont	Circular bioeconomy	Priority 2 Tech	•	Promote a circular bioeconomy model through territorial regeneration and environmental protection, developing bio-based, biodegradable, and compostable products	<u>71</u>

Portfolio of Cases (VII/VII)

Company name	Case name	Priority	Case objective	Page
Novonesis	From CO2 to protein	Priority 2 Tech	 Electrochemical processes to convert CO2 into acetate and transformation into protein through fermentation, for human consumption 	<u>72</u>
Novonesis	Healthier feeds at lower cost	Priority 2 Tech	 Improve poultry feed efficiency and farm economics with a biosolution that removes bacterial cell debris in the gut, enhancing nutrient absorption and reducing feed required 	<u>73</u>
Novonesis	Less waste, more taste	Priority 2 Tech	 Enable effective cold-water laundry with enzyme biosolutions that cut surfactants and energy use while maintaining (or improving) cleaning performance 	<u>74</u>
Novonesis	The hot topic of cold wash	Priority 2 Tech	 Reduce food waste in bread and yogurt by extending shelf life: enzymes keep bread moist/elastic longer, and bioprotective cultures inhibit mold/yeast in yogurt— maintaining fresh taste with fewer discards 	<u>75</u>
Siemens	Tech4Amazonia	Priority 2 Tech	\bullet Enable scalable, resilient innovation for the Amazon using digital and tech solutions to cut CO $_2$, improve circularity and energy efficiency, and boost local economies by closing the implementation gap	7 <u>6</u>
UFMG	Long-term bio	Priority 2 Tech	 Microbial-based biological solution to reduce post-harvest losses in fruits and flowers, extending their shelf life and commercial viability in a sustainable way 	<u>77</u>
Vale	Jornada Amazônia platform	Priority 2 Tech	 Open innovation platform and programs (Genesis, Synapse, Synergy) to foster Amazon bioeconomy by mobilizing talent, creating startups, and attracting industry/investors 	<u>78</u>
Volkswagen	Sugarcane plastics truck parts	Priority 2 Tech	 Produce parts of vehicles using renewable materials in order to reduce carbon foot print and fossil fuel dependance. 1st component produced was the AdBlue tanks using polyethylene from sugar cane 	<u>79</u>

Portfolio of Cases

Awards

Pragati project

BASF, India

Objective

Sustainable castor crop production, improving agricultural practices and ensuring responsible sourcing in the world's leading production region

Mature, generating stable results

Stakeholders

- BASF as partner
- Arkema as partner
- Jayant Agro-organics as partner
- Solidaridad Network India for community engagement and training
- Traditional communities & farmers as producers

Implementation Step Period 1 Launch and expansion of the project Ongoing

Indicators				
KPI	Unity	Current values		
Land covered	Hectares	9,000		
Farmers certified	#	8,000		
Productivity: yield increases	Percentage increase	+57%		
Water savings	Percentage reduction	33%		

	Ney aspects
WG alignment	 Transforms castor farming into a sustainable value chain that reduces environmental impact, promotes efficient resource use, and delivers tangible social and economic benefits to farming communities
Economic impact	 Increases yields by 57% while ensuring sustainable and stable supply of castor crop, improving the income and climate resilience of at least 8,000 families

Key aspects

 Promotes sustainable land use through Sustainable Castor Caring for Environmental & Social Standards

Innovation

 Pioneer the 1st project that aimed at sustainable castor farming in India, ensuring environmental, social, and economic standards

Risks

No relevant risks identified in the project implementation

Scalability

 Demonstrates a scalable blueprint for similar initiatives, leveraging a partnership model that unites organizations, NGOs, and producers, while emphasizing the need for careful adaptation to local climatic, environmental, and social contexts

Credits for Life

Dengo Chocolates, Brazil 📀

Objective

Implement a results-based scheme (PCSAF) to remunerate environmental services in cabruca cocoa systems, with continuous MRV and an outcome-based financing structure

Implemented, generating first results

Stakeholders

- Dengo as market anchor & project sponsor
- **ECAM** for community engagement & field implementation
- **ReSeed** for digital MRV, traceability & transparency
- Impact Not a Bank for structuring support
- Global Forest Bond / KPMG for structuring / field data assurance
- Smallholder producers & local communities as direct beneficiaries

Implementation			
Step		Period	
1	Producer mobilization, baseline & diagnostics	2023 - 2024	
2	Eligibility assessments, onboarding & contracts	2024 - 2025	
3	MRV in operation and first crediting/payments	2025 - 2026 ╒	
4	Scaling to ~3,000 producers/ 75,000 ha	2025 - 2028 😂	

Indicators				
KPI	Unity	Current values		
Enrolled area	Hectares	2,815		
Families engaged	#	104		
Avoided emissions	tCO ₂ e	1,006,115		
Share to producers	%	80%		

	WG alignment	 Mobilizes climate finance to conserve the Mata Atlântica Forest and promotes cabruca agroforests; improves rural livelihoods and recognizes biodiversity and carbon services with an inclusive, smallholder-first design
	Economic impact	 Directs 75–80% of returns to producers over time via direct payments and technical assistance; reduces income volatility and strengthen the cacao value chain
CO ₂	CO₂e impact	 Avoids ~1 MtCO₂e in Stage 1, and pursues a total of ~10 MtCO₂e of avoidance and removals over 20 years as the program scales
	Innovation	 Implements continuous MRV with ReSeed (digital registry and blockchain traceability), deploy outcome-based financing (Outcome Bond structure), and standardize field + remote data to cut transaction costs
((4)	Risks	 Key risks include land-tenure clarity, certification/MRV timelines and costs, carbon-price volatility, policy changes, and smallholder adoption capacity; mitigate via accompaniment, transparent MRV, and diversified revenue

Scales to ~3,000 producers and ~75,000 ha in southern Bahia, and replicates across other

cacao/agroforestry landscapes using the same MRV and payment logic

Key aspects

Scalability

Sustainable hyaluronic acid production

Givaudan, France

Objective

Strain engineering, precision fermentation and process optimization to deliver low-impact Hyaluronic Acid production

Mature, generating stable results

Stakeholders

- Givaudan International as project leader and producers
- Bio-refinery network for agricultural biomass upcycling (Beetroot, wheat), CO2 capture, energy co-generation (bio-methane & biomass), ferti-irrigation partners and water management

Implementation			
Step	Period		
1 R&D strain engineering	2020-2022		
2 Industrial scale up	2022-2023		
3 Industrial production	2023		
4 Commercialization	2024		

Indicators			
KPI	Unity	Current values	
GHG	% reduction	92%	
Acidification and eutrophication of water		95%	
Non-renewable energy usage	% reduction	90%	
Water consumption	% reduction	75%	

Key	aspects
-----	---------

		ricy appeals
	WG alignment	 Reduces the product's climate impact using biotechnology; upcycles locally harvested agricultural by-products through a bio-refinery; and protects biodiversity and workers via responsible sourcing and social practices
	Economic impact	 Streamlines production steps, eliminates energy-intensive phases, and increases fermentation yields to lower manufacturing costs and achieves R&D payback in under two years
CO ₂	CO₂e impact	 Cuts CO₂ emissions by 92%, reduces non-renewable energy use by 90%, and lowers water use by 75% through precision fermentation
	Innovation	 Pioneers precision fermentation, and advanced strain engineering to deliver a 10× more sustainable version of this cosmetic ingredient
	Risks	No relevant risks identified in the project implementation
	Scalability	 Adopts a cutting-edge biotech approach and bio-refinery network to reduce global hyaluronic- acid manufacturing emissions by >90% while sustaining ~40% presence in skincare

applications worldwide

Terrasos' PPP model for ecosystem resilience

Morphosis Solutions, Colombia

Objective

Demonstrate how long-term adaptation and ecosystem resilience can be financed entirely through private capital using a biodiversity credit model anchored in national compliance

Implemented, generating 1st results

Stakeholders

- Morphosis Solutions S.A. as private equity investor
- Terrasos as project owner and developer, habitat bank operator, and risk-bearing asset manager
- Land Degradation Neutrality (LND) Fund managed by Mirova as debt providers for project finance
- Partnerships 4 Forest (p4f) UK gov program for derisking grant capital
- IDB Lab as early-stage investor
- Colombian Ministry of environment for biodiversity offset regulations and habitat banks registry
- **Private landowners** for land via 30-year usufruct or title transfer agreements

Implementation		
Step	Period	
Stakeholder engagement and gov. scheme for habitat bank	12/24 – 03/25	
2 Identify areas and sign binding agreements w/ prop. owners	01/25 – 10/25 (
3 Secure 50% of biodiversity units in offtake commitments	10/25 – 12/25	
Management, monitoring & evaluation plan	01/26 – 03/26	

Indicators		
KPI	Unity	Current values
Ecosystem restoration	Hectares	>2,000 restored; >3,000 enrolled in national registry
Biodiversity protection	# threatened species protected	+1500
Employment	# jobs created	+150
Expected revenue	US\$	50M

Key aspects

(WG alignment	 Mobilizes private climate finance to restore 6,000+ ha for adaptation, protect biodiversity, and enable income for local landowners
	Economic impact	 Delivers reliable, risk-adjusted returns to private investors without public funding; generate service income and dividends from biodiversity conservation; and sell credits to compliance buyers
CO ₂	CO₂e impact	 Reduces emissions by restoring land in an adaptation-first model with mitigation co- benefits, and measure carbon-sequestration change using Terrasos' in-house protocols
	Innovation	 Assumes full balance-sheet risk during restoration in a vertically integrated model, and use the TEBU framework to ensure higher integrity and adaptation benefits beyond regulatory minimums
((1)	Risks	 Key risks include regulatory shifts, ecosystem degradation or delayed restoration, market volatility in credit demand, natural disasters, and balance-sheet exposure from upfront capital deployment
	Scalability	 Scales via PPPs for nature using biodiversity credit markets to deliver adaptation outcomes with carbon co-benefits, and expand through compliance frameworks, MDB financing, and

External links: <u>Unlocking-Natures-value-in-Colombia</u>; <u>Biodiversity Credit Issuance Protocol – Terrasos</u>; <u>Terrasos</u> | Initiative 20x20

supply-chain investment

SAF dendê: Agroforestry system for palm oil *Natura, Brazil*

Objective

Palm oil with agroforestry-based sourcing, restoring soil, cutting carbon, and supporting Amazon communities

Implemented, generating 1st results

Stakeholders

- Natura as the anchor buyer and financier
- Third parties' partners for operationalization
- CAMTA¹ and Cooperatives for coordination and technical knowledge
- Traditional communities & farmers as producers
- Financial institutions as financiers
- State government for land tenure, regularization & training
- NGOs for agroforestry expertise, land mapping

Implementation			
Step		Period	
1	Research - technical feasibility	2007 – 2020	②
2	Proof of concept, evaluation and MVP	2020	②
3	Initial expansion phase – 650ha	2021 – 2024	②
4	Accelerated implementation–MoU signed with CAMTA for 2,000 ha	2024 – 2035	8

Indicators		
KPI	Unity	Current values
Agroforestry implemented	Hectares	650
Smallholder's income	Avg income increase in %	+40%
Carbon sequestration	tCO₂e /hectare/ year	~6

Key	aspects	
ıv	aspects	

	WG alignment	 Links climate, biodiversity, land use, and human rights by conserving forests, securing livelihoods, and scaling sustainable bioeconomy practices
	Economic impact	 Increases ~40% farmer incomes compared to monoculture while ensuring sustainable and stable supply of deforestation-free palm oil, lets intermediaries profit via carbon and crops, and boost investors' IRR through carbon finance
CO ₂	CO₂e impact	 Generates higher incomes for local communities, reducing pressure for deforestation in agriculture, removes up to 6 tons of CO₂e per hectare p.a., based on carbon stock modeling in agroforestry systems
	Innovation	 Produces regenerative palm oil through agroforestry, blending native species with high-value crops, using carbon modeling, payments for ecosystem services modeling and scalable design
(((1)	Risks	 Key risks include unclear land tenure, high upfront costs, limited skilled labor, weak market demand, reversals, environmental insecurity, and policy delays
	Scalability	 Demonstrates a replicable agroforestry model that, when widely adopted, transforms palm supply chains at scale through sustainable practices, stable supply, and enhanced value creation

22

The Amazon regeneration platform

Sanctu, Brazil

Step

Objective

Technology-driven platform for design, financing, support, and market access to regenerate degraded Amazon land, helping farmers adopt sustainable practices

Under implementation

Stakeholders

- Sanctu as main verticalized platform, providing project, credit, technical assistance and sales
- Farmers as the main producers, following Sanctu's protocols and tools
- Corporate buyers for purchasing bioproducts or high-integrity carbon credits
- **Lenders** to finance land transformations (e.g., private pockets, funds, BNDES, blended)

Period

10/23 – 07/24

03/25 - 07/25

03/25 - 07/25

01/29 - 07/29

Implementation

Reach 60,000 farms (6 million ha) 01/35 - 07/35

Pilot - Onboard 1st 3 farms

Pilot - Reach 10 farms (1,000 ha)

Reach 1,000 farms (100,000 ha)

1st sale (30 ton of pumpkins)

	Indicators	
KPI	Unity	Current values
Regeneration of degraded land	Hectares	1.000
Families engaged	#	10
Income increase per family	Multiplier vs. avg R\$ 1,000/month	10x ¹
Economic return	IRR per farm	30% ¹

Key	aspects

		, ,
	WG alignment	 Aligns through economic development, sustainable livelihoods, and ecosystem restoration, using technology and climate finance capital
	Economic impact	 Boosts family income 10x for 60,000 families that live below UN's poverty line, diversifying their income to regenerative cattle, agroforestry, and carbon projects
CO ₂	CO₂e impact	 Achieves 30 million tCO₂e q. in high-integrity credits (ARR and REDD) by 2040 using satellite data and Al for accurate CO2 measurement and reporting (less than 10% of total revenues)
	Innovation	 Unifies fintech, agtech, and marketplace platform powered by AI, delivering world-class tools to farmers
	Risks	 Key risks include severe climate events, lack of off-takers, product price volatility, regulatory shifts, and the degree of producer engagement with the project
	Scalability	 Achieves a 30% IRR for every US\$ 60K invested per farm, enabling scale without depending solely on patient capital, regenerating and protecting an area larger than Espírito Santo state

External links: Sanctu • Nurture & Prosper

Portfolio of Cases

Fostering convergence across the three Rio Conventions and ICCPR

IDEAL - Industrial Exploitation of microalgae A4F, Portugal

(1)

Objective

Industrial exploitation of microalgae, in co-location with a chemical plant facility, recycling CO₂ and effluents into biomass

Implemented, generating 1st results

- A4F as project leader and operator
- LusoAmoreiras as private investor
- Green Aqua Póvoa as local partner and community engagement
- HYCHEM (former SOLVAY Portugal) as industrial partner and resource provider
- Government and public bodies as financiers

Implementation			
Step		Period	
1	Technical foundations from FP7 R&D project BIOFAT	2011 – 2016	♥
2	BIOFAT.PT funded and implemented (stage 1)	2017	❖
3	Initial operation/exploitation plan	2018 – 2019	
4	Prep. of replication business cases and client acquisition	2020 – 2022	
5	Ongoing preparation to expand to BIOCLUSTER	2023 – 2028	(2)

Indicators			
KPI	Unity	Current values	
Local employ- ment created	# (FTE)	43	
CO ₂ removal	Tons/ year	2,000	
Production capacity	Tons of biomass /year	270	
Sales	US\$/ year	5.5 M	

Key as	spects
--------	--------

	WG alignment	Transforms industrial effluents into biomass, reducing carbon emissions, revitalizing a decommissioned site without expanding farmland, creating over 43 jobs
	Economic impact	 Leverages a co-location model that cuts operating costs, achieving a positive NPV and attractive IRR, with annual sales of US\$ 5.5M from a US\$ 24.5M investment
CO ₂	CO₂e impact	• Captures and recycle ~2,000 tons of CO2e/year through large-scale microalgae cultivation
	Innovation	 Pioneers an industrial symbiosis model that co-locates Europe's largest microalgae biorefinery with a chemical plant
	Risks	 Key risks include operational risks in scaling complex bioprocesses, alongside market and price volatility in underdeveloped microalgae markets across certain regions
	Scalability	 Demonstrates a replicable model that can cut millions of tons of CO₂ annually through large-scale industrial symbiosis, while produce high-value biomass without additional land use

AMAYU superfruits

AJE, Peru

Objective

Developing sustainable value chains for Amazonian superfruits (e.g., aguaje, camu camu, aguaymanto, açaí) in beverages and shots

Mature, generating stable results

Stakeholders

- AJE as project leader and operator
- National Service of Natural Protected Areas for governance guidance
- British Embassy of Peru for technical support
- Traditional communities & farmers as producers

Implementation			
Step		Period	
1	Design of sustainable business strategy	2016	
2	Development of sustainable value chains	2017 - 2019	✓
3	Market launch of AMAYU beverages	2019–2020	✓
4	International showcasing at COP26–28	2021–2023	✓
5	Long-term scaling with biodiversity monitoring	2024–2025	(2)

Indicators		
KPI	Unity	Current values
Forest conservation	Hectares	4.5 million
Community empowerment	Families	+250
Sustainable sourcing	Kg of native fruits purchased	+2.4 million
Product innovation	# products launched	8

		, I
	WG alignment	 Showcases how Amazonian biodiversity can be good for livelihoods, and conservation, while creating sustainable value and economic empowerment for communities in the Global South
	Economic impact	 Leads with an investment of US\$ 1 million to develop a commercial portfolio of 8 biodiversity-based beverages, and provides formal income opportunities for over 250 families from 25 communities
CO ₂	CO₂e impact	 Contributes to the preservation 4.5 million hectares of forest in the Pastaza Fan, contributing to safeguarding part of Peru's 3.5 billion tons of carbon stocks and reducing risks of deforestation-linked emissions
	Innovation	 Maintains AMARUMAYU, a business unit dedicated to connecting indigenous superfruits with global markets, supported by fair trade mechanisms and conservation-linked branding
(((1)	Risks	 Key risks include illegal mining, logging, and drug trafficking in low-governance areas
	Scalability	 Demonstrates a replicable model across tropical forest countries linking biodiversity conservation with profitable superfruit value chains

External links: Video 26

Cocli project

BASF, Colombia

Objective

Sustainable palm oil production with training and fair labor practices

Implemented, generating 1st results

- BASF as the program leader and financier
- Solidaridad Network as implementation support partner
- Traditional communities & farmers as producers

Implementation				
Step	Period			
Launch and expansion of the project	10/24 – Ongoing	8		

Indicators				
KPI	Unity	Current values		
Farmers trained	#	865		
Sustainability index monitoring	# producers	1,577		
Improve land management	Hectares	117,291		

Key aspects			
	WG alignment	 Transforms palm oil into a sustainable value chain that protects biodiversity, promotes fair labor, and delivers social and economic benefits to farming communities 	
	Economic impact	 Increases yields by 10% while ensuring sustainable and stable supply of palm oil, improving the income and climate resilience of at least 300 families 	
CO2	CO₂e impact	 Promotes sustainable land use through RSPO¹ certification standards, which include strict criteria against deforestation and conversion of high carbon stock or high conservation value areas 	
	Innovation	 Integrates various disciplines (training, technology, community engagement) to create scalable and replicable solution 	
((1)	Risks	No relevant risks identified in the project implementation	
	Scalability	 Demonstrates a replicable model already implemented successfully in other regions worldwide to deliver sustainable palm oil supply chains and strengthen smallholder climate resilience 	

MataViva: 40 years of forest regeneration and biodiversity protection *BASF, Brazil*

Objective

Flagship initiative for forest restoration, improving water and soil, fostering biodiversity and supporting climate goals via carbon sequestration

Mature, generating stable results

Stakeholders

- BASF as project creator, main funder, and longterm implementer
- Eco+ Foundation (NGO) as technical supervisor and sustainability project developer
- Smallholder farmers & traditional communities as seed suppliers, producers, and knowledge holders
- Brazilian government (regulators under the Forest Code and Atlantic Forest Law) for compliance and enabling frameworks

Implementation				
Step		Period		
Mapping of local needs/ ecosystems/smallholders and workers		01/14 – 06/14		
2	Launch of the project	07/14 – 07/25 🖘		

Scalability

Indicators				
KPI	Unity	Current values		
Trees planted	# native trees	1.3 million		
CO2 Offset	tCO2	210,000		
Restored area	Hectares	875		
Biodiversity	# plant species # animal species # water spring	+180 +150 5		

Keι	/ aspects
1 (0)	aopocio

		, <u> </u>
	WG alignment	 Restores riparian and Atlantic forests in compliance with BASF's Forest Protection Policy, supporting biodiversity, water resources, and climate goals
	Economic impact	 Generates carbon credits by offsetting CO₂, strengthening local value chains, reducing environmental risks and costs, and enhancing BASF's reputation in global rankings like CDP
CO ₂	CO₂e impact	 Plants and conserves over 1.3 million native trees since 1984, helping capture CO₂ and achieving an offset of around 210,000 tons across MataViva sites
	Innovation	 Pioneers one of the first corporate forest regeneration programs, creating a replicable model that integrates biodiversity, carbon markets, and business networks while supporting institutional communication and new opportunities
	Risks	No relevant risks identified in the project implementation

sites, with strong potential to expand into other regions and industries

Demonstrates a proven model which was later implemented across 7 South American

Sustainable Rambutan: a longstanding responsible sourcing project BASF, Vietnam

Objective

Implementation of certified sustainable farming practices for organically grown rambutan and its by-products used as renewable feedstocks in the production of cosmetic ingredients

Mature, generating stable results

- BASF as anchor buyer and financier
- Academia / Research institutions as research and innovation partners
- Traditional communities & smallholder farmers as producers

Implementation			
Ste	p	Period	
1	Mapping of local needs/ ecosystems/smallholders and workers	01/14 – 06/14	
2	Launch and expansion of the project	07/14 – 07/25 😂	

	Indicato	ors
KPI	Unity	Current values
Develop new cosmetic ingredients	#	3

Key aspects			
	WG alignment	 Transforms rambutan cultivation into a certified sustainable value chain that supports biodiversity, fair labor, and community welfare 	
	Economic impact	 Increases farmer incomes and working conditions while ensuring a stable, sustainable supply of rambutan, enhancing livelihoods and creating new opportunities for women and rural communities in Vietnam 	
CO2	CO₂e impact	 Promotes sustainable agriculture through Ecocert-certified organic rambutan cultivation, which ensures environmentally responsible farming practices and achieves zero-waste use of rambutan by-products 	
	Innovation	 Develops three COSMOS-approved cosmetic actives from rambutan by-products (NEPHORIA™, NEPHYDRAT™, RAMBUVITAL™) 	
((1)	Risks	No relevant risks identified in the project implementation	
	Scalability	 Demonstrates a replicable model already implemented successfully in other regions, building on BASF's Argan program experience 	

Sociobiodiversity Enhancement Program®

Beraca by Clariant, Brazil 💿

Objective

Promote socioeconomic inclusion for agroextractive producers and biodiversity conservation through the bioeconomy, inspiring sustainable actions aligned with the COP30 climate agenda

Mature, generating stable results

- · Beraca by Clariant as lead & off-taker
- Cooperatives & associations as suppliers and guardians of the biodiversity
- · Corporate clients (global) as market access/off-takers
- NGOs & academia for innovation and Sustainability researchers
- Public sector & certifiers as regulation & organic/ABS compliance

Implementation			
Step		Period	
1	Mapping demand & onboarding suppliers	01/25 - 02/251	
2	Community diagnosis & preparation	03/25 - 03/251	
3	Standards, Supplier Guide rollout & training	04/25 – 12/251	
4	Organic certification & long-term purchase agreements	01/26 - 01/291	

Indicators				
KPI	Unity	Current values		
Organic production	Hectares	1,830,000		
Families benefited	#	14,000		
Companies engaged globally	#	300		
Waste diverted from landfills	t	1,370		

Key	aspects

	WG alignment	Advances standing-forest bioeconomy, organic production, and community inclusion	
	Economic impact	• Reaches 14k families and 300 companies; long-term purchase guarantees and organic markets strengthen local incomes	
CO ₂	CO ₂ e impact • Generates socioeconomic inclusion for agroextractive communities, reducing pressure for deforestation in agriculture, while diverting 1,370 t of waste from landfill/incineration		
	Innovation	• Promotes direct community sourcing with long-term purchase guarantees under a 4-pillar model (people, biodiversity, profitability, ethics), embedded in the core business	
	Risks	 Key risks include variation in the harvest of sociobiodiversity products, combined with changes in rainfall patterns and other climate impacts, as well as logistical and operational difficulties 	
	Scalability	 Demonstrates a replicable model already applied successfully with 14,000 families, and highlights its scalability across 11 states in Brazil and communities at different stages of organizational maturity 	

Baru Nut Shell

Binatural, Brazil

Objective

Replace firewood with agroforestry waste (baru nut shells) as renewable biomass

Mature, generating stable results

- Binatural as project leader and implementer
- Local cooperatives (Copabase & informal farmer networks) as biomass suppliers, community partners, and packaging producers
- Smallholder farmers & traditional communities as producers of baru nut shells and key partners in agroforestry practices
- Private sector buyers & agro-industries as adopters of renewable biomass and market enablers

Implementation		
Step	Period	
1 Scientific validation	04/23 – 04/24	
2 Market & Pricing	05/24 – 05/24	
3 Storage & Packaging solutions	05/24 – 06/24	
4 Supply & contracts	06/24 – 08/24	
5 Continuous use & Support	08/25 – 08/26 (

Indicators		
Unity	Current values	
Tons of waste avoided	100	
	Unity Tons of waste	

		Key aspects
	WG alignment	 Aligns fossil/native wood fuel substitution with agroforestry residues to cut emissions, support biodiversity, and foster a local circular economy
	Economic impact	 Reduces boiler fuel costs, create new markets for agro-waste, and ensure stable revenue streams for family farmers
CO ₂	CO₂e impact	 Lower deforestation pressure by substituting firewood, reduce carbon footprint, and avoid methane from waste in landfills
	Innovation	 Introduces the first industrial-scale use of baru nut shells as biomass; scale a circular economy model using existing infrastructure
	Risks	 Key risks include market acceptance, long-term farmer engagement, and logistics (storage, packaging, seasonality)
	Scalability	 Demonstrates a replicable model for industries through low CAPEX, fast payback, and high-impact feasibility

BANATEX-EA Busitema University, Uganda

Objective

Transform banana stem waste into textiles, energy, and fertilizer; creating jobs and reducing pollution

Under implementation

- Busitema University for research, coordination of the program and technical expertise
- Government of Uganda for financial support
- **Traditional communities** and farmers as suppliers and producers
- SMEs as offtakers

Implementation			
Step	Period		
1 Contracting banana farmers	09/24 – 07/26 ╒		
2 Research and training	09/24 – 07/26 (
Installation of processing equipment	09/24 – 10/25 ╒		
4 Marketing and refining product	11/24 – 09/26 (

Indicators		
KPI	Unity	Current values
Registered producers	# people	140
Reduction of farm waste	Tons	TBD
Gender equity involvement	Participation rate of women	50%

Key	aspects

		, ,
	WG alignment	 Converts agricultural waste into valuable products, while leveraging innovative technologies for sustainable textile bioproduction
	Economic impact	 Transforms low-cost agricultural waste into high-value textile inputs, with affordable processing, growing global demand for sustainable fibers, and addressing existing cotton deficits
CO ₂	CO₂e impact	 Introduces better fiber extractors utilizing electricity instead of diesel; reduce methane gas emissions in farms; utilize rainwater and underground water harvest to reduce municipal water extension
	Innovation	 Develops IP-based banana fiber technology to enable efficient and cost-effective fiber extraction
	Risks	 Key risks include climate change effects on banana production, impact on compost needed for regeneration, market uptake, weak regulatory landscape
	Scalability	 Demonstrates a replicable model that scales circular production that reduces emissions by converting banana waste into fiber, replacing synthetics and cutting waste burning

The Caatinga model for the world Caatinga Association, Brazil

Objective

Restoration program in Caatinga's biome that combines forest restoration with innovative technologies and community training to strengthen the sustainable carnauba value chain

Implemented, generating first results

- Associação Caatinga as project lead and implementer
- Celeo Redes & Grupo Boticário as private sponsors/off-takers enablers
- VBIO.eco, FIEC & Sindcarnaúba as governance, market and coordination partners
- UFRN (Federal University of Rio Grande do Norte) as scientific partner (elongated-root seedlings)
- Local/traditional communities & smallholders as producers and beneficiaries
- **Public sector** as regulatory and Benefit-Sharing Law (13.123/2015) support

	Implementation		
Step		Period	
1	Diagnosis, planning & articulation	2022 – 2024	
2	Training & awareness	2022 – 2024	
3	Social tech & restoration (20 ha, elongated-root seedlings)	2022 – 2024	
4	Monitoring, communication & replication	2022 – 2024	

	Indicator	rs .
KPI	Unity	Current values
Area restored	Hectares	20
Native seedlings planted	units	20,000
CO ₂ removal	tCO ₂	3,719 tCO ₂
Straw for crafts	units	10,000

Ke	/ aspects	

	WG alignment	 Demonstrates how ecosystem restoration and sustainable value chains can simultaneously deliver climate mitigation, biodiversity recovery, and community rights
	Economic impact	 Generates new income via improved carnaúba management, craft straw use, and higher-quality powder (solar dryer)
CO ₂	CO₂e impact	 Delivers long-term carbon gains from 20 ha restored and enhanced ecosystem resilience; project 3,719 tCO₂ over 30 years
	Innovation	 Applies elongated-root seedlings (for higher survival in drought) and a solar carnaúba dryer that boosts quality, adds value, and enables circular use of whole straw for crafts
	Risks	 Key risks include low seedling survival in droughts, market fluctuations for carnaúba, community engagement and financing continuity
	Scalability	 Demonstrates a replicable model in semiarid regions with low-cost, adapted technologies and documented methods (model community, training, videos)

Driving large-scale, profitable restoration *Genera Bioeconomia, Brazil*

Objective

Restore degraded land with native species using circular inputs (wastewater sludge and rock dust), generating agroforestry products and ARR/ERW carbon credits

Under implementation

Stakeholders

- Genera Bioeconomia as project leader
- Aegea as industrial partner providing wastewater sludge for fertilization
- Local mining company as industrial partner providing rock dust for ERW
- UNEP as academic partner developing carbon credit methodology (FINEP project)
- Angel investors as initial financiers (Phase 1 funding)
- Venture capital & impact investors as financiers for scale-up (Phase 2)
- Local / Traditional Communities as land stewards and cultural knowledge partners

Implementation			
Ste	p	Period	
1	Validate business model and acquire first farm	2023 – 2024	⊘
2	Execute MVP	2024	\checkmark
3	Build team & partner with Aegea/miner/Unesp	2024 – 2025	*
4	Close seed round and build nursery + clonal garden	2025	(2)
5	Expand land acquisition and production	2025 – 2026	8

Indicators				
KPI	Unity	Current values		
Land under management	Hectares	200		
Land in pipeline	Hectares	100,000		
ARR seques- tration at scale	tCO2	700,000²		

	WG alignment	Restores degraded pasture into native-species agroforestry to enhance biodiversity
	Economic impact	 Reduces emissions via ARR sequestration and ERW, with biochar valorizing residues; treating one hectare with 50-100 tons of rock dust can sequester 10-40 tons of CO2 annually
CO ₂	CO₂e impact	 Reduces emissions via ARR sequestration and ERW, with biochar valorizing residues; treating one hectare with 50-100 tons of rock dust can sequester 10-40 tons of CO2 annually
	Innovation	 Combines agroforestry, ERW, and biochar with circular inputs (ETE sludge, rock dust) for soil health and yield
///	Pieke	Key risks include seedling availability and fertilizer costs, workforce qualification, demand

and pricing of biodiversity products and climate risks

standardized MRV to scale across Amazonas

Demonstrates a replicable model leveraging Manaus Free Trade Zone incentives and

Key aspects

Scalability

Risks

Kanuka oil

Hikurangi Bioactives, New Zealand

Objective

Proven natural eczema treatment, that supports Maori communities, protects ecosystems, and models ethical biocommerce through Indigenousled innovation and benefit-sharing

Under implementation

Stakeholders

- Hikurangi Bioactives as producer
- Kanuka Charitable Trust as NGO for community engagement and biodiversity protection
- Traditional communities and farmers as suppliers (e.g., Māori land trusts and indigenous peoples)

HIKURANGI BIOACTIVES
LIMITED PARTNERSHIP

Implementation			
Step	Period		
1 Initial research & investments	2016 – 2017		
2 Harvesting & extraction trials	2017 – 2019		
Clinical trial results & IP licensing	2018 – 2024		
4 Quality management system	2021 – 2025 ខ		
5 First orders & US launch	2025 – 2026 🛜		

Indicators			
KPI	Unity	Current values	
Local employ- ment created	# FTE	15	
Sust. harvesting compliance	% of harvesters compliant	100%	
Decarbonized oil production	% produced w/ no fossil fuels	50%	

Key	aspects	
ıv	aspects	

(WG alignment	Aligns through indigenous leadership, climate resilience, and ethical biocommerce
	Economic impact	 Builds a value-added Indigenous-led industry with rapid setup and early returns, including commercial arrangements that ensure 2/3 of royalties flow to nature and communities of origin
CO ₂	CO₂e impact	 Reduces CO₂e impact as largest kanuka oil producer transitions from using natural gas and diesel to wood pellets for energy in oil extraction, representing around half of the production
	Innovation	 Pioneer a clinically validated natural eczema product and scalable processing systems rooted in Indigenous innovation
((1)	Risks	 Key risks include market shifts, supply issues, governance conflicts, weak IP or regulation, and unsustainable growth, which threaten revenue, equity, ecosystems, and long-term viability of the kanuka industry
	Scalability	 Proves scalability through cultivation with low-emissions land use, native reforestation, and local processing, promoting nature-based solutions and sustainable biotrade

Nespresso coffee reviving origins

IFC, Uganda

Objective

Revitalization and expansion of coffee production through climate-smart agricultural practices, increasing farmer incomes and advancing gender equality

Implemented, generating 1st results

- Nespresso as the anchor buyer
- Agri Evolve Uganda as the farmer's support
- Kyagalanyi Coffee as Processor & Exporter
- IFC as financer and oversight
- Traditional communities & farmers as producers
- KIT Institute for research and evaluation

Implementation			
Ste	p	Period	
1	Project initiation and financing approval	01/21 – 01/22	
2	Farmer training and capacity- building	01/22 – 06/25	
3	Capacity enhancement for sust. standard compliance (EUDR)	01/22 – 06/25	
4	Advisory support, monitoring, and technical guidance	01/21 – 12/26 (

KPI	Unity	Current values
Farmers trained	#	2,253 (55%women)
	Metric tons / hectare	2.3

Key	as	pects	

	WG alignment	 Restores soil productivity to improve quantity/quality of coffee yields, improved livelihoods, enhanced gender equality, increased local economic resilience through premium coffee production
	Economic impact	 Improves yields, quality, and premium pricing; aligned profitability for Nespresso and expansion of supply complying with European Union Deforestation Regulation
CO ₂	CO₂e impact	 Generates higher incomes for local communities, reducing pressure for deforestation in agriculture and enhancing soil carbon capture with regenerative agriculture
	Innovation	 Pioneer the integration of climate-smart coffee farming transforming compliance with EU deforestation rules from a cost burden into a market advantage for smallholder farmers
((1)	Risks	 Key risks include climate variability, market fluctuations, uncertain farmer adoption rates, and policy or regulatory changes
	Scalability	 Scales highly across agricultural commodities and regions; leverage proven model building on experiences and lessons from a previous IFC-Nespresso project with smallholders and coffee sustainability practices in Ethiopia

Biodiversity Arc in the Amazon (Arco da Biodiversidade)

Instituto Interelos, Brazil **Objective**

Create productive hubs across the Amazon, anchored in sustainably managed açaí, that form a "Biodiversity Arc" to curb deforestation while diversifying value chains and household income

Under planning

Stakeholders

- Instituto Interelos as project lead and convener
- Local/traditional communities & smallholders as producers and hub operators
- Cooperatives & associations as coordination and market linkage
- Academia/research institutions as technical and training partners

	Implementation	on
Step		Period
1	Territory selection & baseline assessments	01/26 - 08/26
2	Community mobilization & collective agreements	04/26 - 08/26
3	Hub setup: org strengthening, infra & logistics; tech solutions; rural education	06/26 – 12/27
4	Assisted operations of agro- industries; M&E scale & replication of hubs	01/27 – 01/29

	Indicators	
KPI	Unity	Current values
Families impacted		4,300
Income per family	R\$/year	11,200
States covered	#	3
Program duration	Months	48

		Key	as	pects	
 	_				

alignment

· Tackles drivers of deforestation through standing-forest economies (açaí-led hubs), social inclusion, and rural education

Economic impact

Generates economic impact by targeting 4,300 families with an average R\$11,200/year additional income, while shared infrastructure lowers costs and improves market access

 CO_2e impact

 Reduces CO₂e impact indirectly by decreasing pressure to clear forests and by supporting conservation through profitable, sustainable value chains

Innovation

· Introduces innovation via an arc-of-hubs model anchored in açaí as a "pull product," combined with shared processing/logistics and alternating rural education to build human capital

Risks

 Key risks include low cooperative adherence, Amazon logistics, policy/regulatory instability, limited skilled labor, and market pressures

Scalability

 Demonstrates a replicable model across Amazon biomes, using philanthropic funding with potential blended-finance mechanism to enable expansion

4 returns in Kaigu peat bog

Laflora, Latvia

Objective

Transformation of former peat extraction site into a Green Industrial Zone that combines wind energy, peatland restoration, and sustainable industry

Under implementation

Stakeholders

- Laflora Ltd as project developer
- Governmental energy company as anchor investor and financier
- Municipality of Jelgava & Jelgava County Municipality for land-use and community
- Ministry of Economics & Zemgale Planning Region for policy alignment, regulatory support
- Riga Technical University & Latvian University as academic partners
- UPB Ltd, MUUD Ltd, Gakon Netafim for industrial technology
- LDDK, Business Europe for private-sector coordination
- CSR Latvia, LTRK for sustainability standards
- AS Latvenergo as an energy sector stakeholder

	Implementation	on
Step		Period
1	Wind Park Construction	2024 – 2026 ខ
2	Green Industrial Area Planning & Certification	2021 – 2030 😂
3	Peatland Restoration Plan & technology shift	2022 – 2050 (
4	Greenhouse Complex	2026 – 2030 (
5	New Product Research	2024 – 2027 😑

Indicators			
KPI	Unity	Current values	
Restoration of peat bog area	Hectares	650	
GHG emissions offset by wind power ¹	kt CO ₂ e	474.06 (2030); 3,216.97 (2050); 6,245.92 (2075)	
Installed renewable energy capacity	MW	108.8	

		Key aspects
7	WG	Aligns by reducing GHG emissions, creating

 Aligns by reducing GHG emissions, creating renewable energy and jobs, and repurposing degraded peatlands for climate and biodiversity benefits through strong local stakeholder engagement

Economic impact

Delivers scalable and diversified sustainable revenue with risk-adjusted returns in line with industry benchmarks, supported by policy incentives and public-private partnerships (NPV €30–50M, IRR 10–18%, payback 10–15 years)

CO₂e impact

 Reduces emissions by recultivating peatlands to halt peat oxidation and restore carbon sinks, achieving long-term climate neutrality with wind power alone offsetting 474.06 kt by 2030

Innovation

 Combines wind energy development with large-scale peatland restoration to transform landscapes into climate assets by integrating renewable production, nature-based solutions, carbon removals, and a scalable, investable green industrial zone

Risks

• Key risks include potential delays in permitting, regulatory approvals, legislative or political changes, and public opposition to wind turbines or land-use changes

Scalability

 Creates a replicable land-use transformation that supports the Paris Agreement and can be adapted to other peatlands and industrial zones globally

Together the Amazon

Michelin, Brazil

Objective

Rubber value chain strengthening through fair compensation and payment for ecosystem services

Mature, generating stable results

Stakeholders

- Michelin as project leader and anchor buyer
- WWF as technical partner
- Memorial Chico Mendes as implementation support
- Traditional communities & farmers as producers
- IMAFLORE / Rede Origens for certification and sustainability standards
- Conexsus to structure financial mechanism

39

	Implementation		
Step		Period	
1	Partnership Formalization	2019	
2	Diagnosis & Strategy Development	2020	Ø
3	Community Engagement & Infrastructure	2021 – 2027	8
4	First Harvest & Scaling	2022 – 2024	\approx
5	Expansion to Full Scale	2025 – 2027	(2)

Indicators			
KPI	Unity	Current values	
Forest Conservation	Hectares	105,000 directly 269,000 indirectly	
Families engaged	#	600	
Native rubber produced	Tons	354.5	

Key aspects

	WG alignment	 Links climate, biodiversity, land use, and human rights by conserving forests, securing livelihoods, and scaling sustainable bioeconomy practices
	Economic impact	 Generates R\$4.95M in direct purchases for 600 families (2022–24), and use zero-interest blended finance and philanthropic funds to ensure low costs and scalable, profitable supply chains
CO ₂	CO₂e impact	 Generates higher incomes for local communities, reducing pressure for deforestation in agriculture; protects 105,000 ha directly and 269,000 ha indirectly, in a way the project prevents major carbon releases, offering a sustainable alternative to industrial rubber
	Innovation	 Combines digital infrastructure, fair payment for ecosystem services, and traditional tapping knowledge to build a pioneering, community-led, low-carbon supply chain
((1)	Risks	 Key risks include climate change impacts, deforestation threats to >105,000 ha, limited community engagement, remote logistics, and unstable regulations
	Scalability	 Leverages abundant rubber resources globally and a replicable model to scale this approach beyond the Amazon, boosting conservation and livelihoods across all rubber regions

External links: WWF Brasil

Tucumã: Beyond the thorns, health, beauty, and opportunity Natura Cosmetics, Brazil

Objective

Transform the native tucumã palm into a bioeconomy asset by building a sustainable value chain that supplies high-performance cosmetic ingredients

Mature, generating stable results

- Natura as project leader, main investor and anchor buyer
- Local cooperatives (APOBV, CAMTAUA, COFRUTA, COOMAC, IRITUIA, CART) as suppliers, and community managers
- Smallholder farmers & traditional communities as producers and knowledge holders
- Brazilian government (FINEP & regulators) for early-stage R&D funding and legal compliance

	Implementatio	n
Ste	р	Period
1	R\&D & safety design	2017 – 2020
2	Community partnerships & training	2018 – 2025
	Supply-chain & production	2017 – 2025
4	Scaling & long-term sustainability	2021 – 2025 ╒

Indicators			
KPI	Unity	Current values	
Supply delivered	Tons	1,000	
Families with new income	#	300	
Avg. cooperative income (2019)	R\$/cooperative	120k–360k	

	Key aspects				
	WG alignment	 Conserves standing forests via community-led value chains, empower women, and strengthen inclusive local economies 			
	Economic impact	 Generates new income streams for ~300 families, increase cooperative revenues (R\$120k-R\$360k per coop in 2019), and ensure reliable ingredient supply powering Natura product lines 			
CO ₂	CO₂e impact	 Generates higher incomes for local communities, reducing pressure for deforestation in agriculture providing incentives for forest regeneration and management in degraded areas 			
	Innovation	 Converts a low-value fruit into a high-performance cosmetic active through pioneering R&D, improve harvesting tools and PPE, optimize cold-chain/logistics, and strengthen the community-first supply model 			
	Risks	 Key risks include unclear land tenure, high upfront costs, scarce skilled labor, weak or volatile market demand, risk of reversals, environmental insecurity, and policy delays 			
	Scalability	Demonstrates a replicable model across other Amazon species/regions, strengthen cooperatives and standardize quality, and support efficient, data-informed, Paris-aligned resource management			

OceanPact, Brazil

Objective

Promote mangrove conservation and community resilience through meliponiculture, combining research and bioeconomy in Quilombo of Feital

Under implementation

- OceanPact Maritime Services as funder and implementer
- Brazilian National Petroleum Agency (ANP) & Energy company as R&D-clause funders
- Universities & research institutes as scientific partners (pollination, honey/propolis analyses)
- NGOs / civil society as governance and training partners
- Quilombo of Feital community as participants, hive keepers and product owners
- **SMEs/market channels** as commercialization partners
- Public authorities (environment/coastal) as permitting and oversight bodies

Implementation		
Step	Period	
Community mobilization & meliponary installation (60 colonies)	2025	
2 Training in meliponiculture & entrepreneurship	2025 – 2026 ╒	
3 Scientific research & monitoring of pollination	2025 – 2027 (
Brand launch & commercialization of mangrove bee products	2026 – 2027	

	Indicators	3
KPI	Unity	Current values
Bee colonies	#	60 (target)
Community trained	#	30
Scientific output	Publications	1 peer-reviewed paper planned

Key aspects		
	WG alignment	 Aligns with Paris Agreement and biodiversity goals by linking blue carbon storage with community-led conservation
	Economic impact	 Provides alternative income via commercialization of honey, propolis, and derived mangrove products
CO ₂	CO₂e impact	 Strengthens mangrove pollination, enhancing regeneration and carbon sequestration in blue carbon ecosystems
	Innovation	 Integrates stingless bee bioeconomy with mangrove conservation, using pollen analysis as a novel ecological monitoring tool
((1)	Risks	 Key risks include losses due to climate or predators, limited community engagement, and delays in research or product commercialization
	Scalability	 Replicable model for other mangrove and coastal communities worldwide, combining biodiversity protection and local bioeconomy

Sütas Circular Bioeconomy Project

Sütas Group, Turkey

Objective

Integrated circular bioeconomy system turning dairy farm and factory waste into renewable energy (biogas) and organic fertilizers

Mature, generating stable results

Stakeholders

- Sütaş Group as project lead, operator and core investor
- Turkish Government as regulator and provider of incentives (State Aid 2012/3305; Law 5346 on Renewables)
- Ministry of Energy and Natural Resources
- EBRD & Private Banks as lenders and cofinanciers
- Research institutions as R&D partners
- Cooperatives & SMEs as supply-chain partners and service providers
- Traditional communities and smallholder farmers as feed suppliers and fertilizer users
- NGOs / Civil society as climate partners

Implementation			
Step		Period	
1	Pilot anaerobic digestion & feasibility studies	2006 – 2011	⊘
2	Biogas plants commissioning (Bursa, Aksaray, Tire, Bingöl)	2013 – 2022	Ø
3	Fertilizer production & soil regeneration	2017 – 2024	Ø
4	Scaling integrated food–energy– waste–soil nexus	2024 – ongoing	(2)

Indicators		
KPI	Unity	Current values
CO ₂ e avoided	Metric tons	~4M tCO₂e
Organic waste processed	%	100%
Energy self- sufficiency	%	92%
Fertilizer produced	Metric tons	750,000

Key	aspects

	WG alignment	 Aligns with Paris climate targets through renewable energy, waste valorization, and soil regeneration
	Economic impact	 Reduces energy costs, improves crop yields, generates revenues from carbon credits, and supports climate-resilient dairy production
CO ₂	CO₂e impact	 Avoids nearly 4M tCO₂e in 12 years, equivalent to sequestration of 2.3M ha of pine forest
	Innovation	 Introduces Turkey's first and largest co-digestion system tailored for dairy, reuses thermal energy onsite within an integrated food—energy—waste—soil nexus nexus
	Risks	 Key risks include high upfront costs, dependence on regulatory incentives, and operational complexity of multi-site integration
	Scalability	 Demonstrates a replicable model across dairy and agri-food industries, delivering emissions reduction and soil restoration benefits in 2–4 years

External links: SUTAS WEBSITE.

Bridging the gap – Amazon

Symrise, Brazil

Objective

Community-led consolidation of Amazon value chains (Brazil nuts, açaí, cupuaçu, andiroba, copaíba, among others), reducing waste and transport through local pre-processing

Under implementation

- **Symrise and Natura** as the anchor buyers, supply chain integrators and financiers
- GIZ as funding partners and for technical cooperation
- NGOs for local training and consultancy partners
- Traditional communities & farmers as producers
- Local authority for compliance

Implementation		
Ste	0	Period
1	Kick-off	09/24 – 12/24
2	Agro-industries regularization, waste characterization,	01/25 – 06/26 (2)
3	Waste recovery & trainings	02/26 – 05/26 (
4	Scale-up – waste management & educational program	02/26 – 05/26 (

Indicators		
KPI	Unity	Current values
Vegetal residue Reduction	% of reduction	40%
Wild collection mapping	Hectares	20,000
Women & youth participation	% applying training in work	80%
Forest preserved	Hectares	60,000

Keι	/ aspects
1 (0)	aopocio

		rio y dopocio
	WG alignment	 Develops value chains, technology, and machinery for Amazon communities, engages youth, highlights women's roles, and promotes forest preservation through sustainable use and implementation of regenerative agroextractive practices
	Economic impact	 Increases volume, with the inclusion of families and communities in the supply chain, improve raw material quality to increase yield and industrial production, and reduce transportation costs of inputs
CO ₂	CO₂e impact	 Generates higher incomes for local communities, reducing pressure for deforestation in agriculture; reduces transportation of raw materials by up to 75% after implementing pre- processing in communities (transport only dried almonds vs. whole fruit)
	Innovation	 Adds value for cooperatives via pre-processing, enable it with new community-adapted machinery that is easy to maintain, and use boat engines in areas without electricity
((1)	Risks	 Key risks include insufficient infrastructure and high costs in the Amazon, and address structural challenges to the participation of women and youth in rural environments
	Scalability	 Demonstrates a replicable model already implemented successfully across 28 communities, and showcase the scalability of actions across different regions (4 states) and varying levels of community maturity

symrise

Bridging the gap – Coconut

Symrise, Philippines

Objective

Coconut-growing community empowerment through regenerative agriculture, diversified income streams, and farm productivity increase

Under implementation

Stakeholders

- Symrise and Absolute company as the anchor buyers and financiers
- GIZ & NGOs for technical expertise, training, and OHS² support
- Traditional communities & farmers as producers
- Local authority for access to services & compliance

Implementation		
Step		Period
1	Kick-off	03/25 – 04/25 🗸
2	Program implementation among 500 coconut farmers	05/25 – 03/28 (
3	Scaling up – share and learn at sector wide level	01/28 – 07/28 😂

Scalability

Indicators		
KPI	Unity	Current values
Farmers part of the program	#	500 ¹
Farm yield	Avg increase in %	+20%
Smallholder's income	Avg increase in %	+15%

		Ties aspects
	WG alignment	 Advances climate-smart coconut farming and income diversification through intercropping, composting, mulching, reforesting ageing trees, and protecting pollinator habitats, while boosting farmer incomes, safety, and community resilience
	Economic impact	 Increases 15% net household incomes while increasing farm yield by 20% to ensure sustainable and stable supply of coconut, and align profitability while meeting growing client demand for products linked to improved farmer livelihoods and nature protection
COz	CO₂e impact	 Generates higher incomes for local communities, introducing regenerative agriculture practices, while setting up baseline calculation of carbon footprint of current coconut production and establish reduction plan in 10 farms pilot
	Innovation	Establishes demo farms to experiment regenerative agriculture practices and integrated Occupational Health & Safety practices in traditional coconut farming
((1)	Risks	Key risks include insufficient infrastructure and high costs
	Scalability	Demonstrates a replicable model already implemented successfully, with potential to reduce

emissions through large-scale regenerative agriculture when scaled across multiple companies

Key aspects

symrise

Bridging the gap – Vanilla

Symrise, Madagascar

Objective

Vanilla-growing community empowerment through regenerative agriculture, diversified income streams, and child protection measures

Under implementation

Stakeholders

- Symrise and Unilever as anchor buyers and financiers
- NGO Save The Children, OSDRM (Aga-Khan Foundation), Bondy, RuralCap and Nitidae for local support
- Traditional communities & farmers as producers
- Local authority for compliance

Implementation		
Step	Period	
1 Kick-off	04/2024 – 06/2024	
Program implementation among 5,000 vanilla farmers	06/2024 – 03/2028	
Scaling up – share and learn at sector wide level	01/2028 – 07/2028	

Indicators		
KPI	Unity	Current values
Regen. Ag. implemented	Hectares	5.000 ¹
Child rights improved	#	+25,000 (50% female)
Smallholder's income	Avg increase in %	+20%

Key aspects		
(SB COP alignment	 Integrates regenerative agriculture, boosts farmers' incomes, and strengthens climate resilience through reforestation, diversified livelihoods, and deforestation-free supply chains
	Economic impact	 Increases 20% net household incomes while ensuring sustainable and stable supply of premium deforestation-free vanilla, and align profitability through higher product value, stable supply, and cost-efficient, scalable implementation
CO2	CO₂e impact	 Reduces carbon emission on the global value chain, reducing pressure for deforestation in agriculture, while delivering climate-smart farm advisory services adapted to household typologies and supporting collective approaches to resilience and adaptation to climate change
	Innovation	 Tailors farmer typology-based support, increase child rights understanding and improve protection issues for over 25,000 children & youth & local stakeholders, and test climate- resilient vanilla varieties in agronomic research centers
((1)	Risks	Key risk include political instability
	Scalability of impact	 Demonstrates a replicable model already implemented successfully, with potential to reduce emissions through large-scale regenerative agriculture when scaled across multiple companies

1. Current projection

Troca Solidária

Terminal de Contêineres de Paranaguá, Brazil

Objective

Recyclable waste is exchanged for food and hygiene items to improve food security and ensure the proper disposal of over 570 tons of waste

Mature, generating stable results

- TCP Terminal de Contêineres de Paranaguá as project leader, financer, and implementer
- Acquaplan Tecnologia e Consultoria Ambiental as technical consultant
- Associação de Catadores e Recicladores da Ilha dos Valadares as community partner
- Local / traditional island communities as participants exchanging recyclables for food and hygiene items

Implementation			
Step		Period	
1	Partnership with the Association	2015	❖
2	Alignment with the Municipal Secretariat of Environment	2015	Ø
3	Presentation of the project to the community	2015	•
4	Project launch	2015	Ø

Indicators		
KPI	Unity	Current values
Total recyclable waste collected	Tons	+ 570
Community engagement	# participants	+900
Number of campaign points established	Campaign points / communities	8/6
CO ₂ e emissions avoided	Tons	~855

Key	aspects
-----	---------

		3 1
	SB COP alignment	 Aligns by reducing GHG emissions, fostering strong community engagement, and promoting circularity
	Economic impact	 Ensures food security for traditional island communities and proper waste management, while avoiding a profit-driven approach for the private sector, it secures long-term business continuity, regulatory goodwill, and a stronger sustainability profile
CO ₂	CO₂e impact	 Recycles 570 tons of waste to reduce CO₂e emissions by approximately 855 tons, based on a study conducted by the Packaging Technology Center
	Innovation	 Pioneers a creative solution in southern Brazil with the "floating market" (boat market) to address community challenges in areas accessible only by boat and without selective collection systems
(((1)	Risks	 Key risks include significant increases in the prices of goods that supply the market
	Scalability of impact	Demonstrates a replicable model for other coastal and riverside communities that face challenges in waste management and food security

Portfolio of Cases

Positioning the bioeconomy as a strategic pillar – Finance

China Shengmu's biodiversity and multicapital assessment

Capital coalitions, China

Objective

Measure and value Shengmu's impacts and dependencies across natural, social, human, and produced capitals to improve decisionmaking, investment, and well-being

Mature, generating stable results

Stakeholders

- Shengmu as corporate implementer and data owner
- Capitals Coalition as framework provider and convenor
- GoldenBee Consulting as environmental economics and valuation partner
- Public authorities (environment & labor) as regulatory and compliance bodies
- Local/traditional communities & smallholder farmers as upstream suppliers and community beneficiaries

Implementation			
Step		Period	
1	Define objectives, scope & baseline	2020–2021	Ø
2	Measure & value 33 impacts and dependencie	2020–2021	Ø
3	Monetize results & validate with KPIs	2021	Ø
4	Apply findings: integrate into risk mgmt & strategy	2021–2022	Ø

Indicators		
KPI	Unity	Current values
CO ₂ e & air emissions	Tons / RMB	1.65M
Waste & manure use	Tons	4.3M (430k tons fertilizer avoided)
Desert restoration		677.2M
Community benefits	RMB value	260M

Key aspects

		7 1
	WG alignment	 Applies the Natural Capital Protocol and TEEB¹ framework, aligns with the Paris Agreement, SDGs², and GBF³
	Economic impact	 Generates significant cost savings and mobilizes RMB 19.8 million in ecosystem services, improving company profitability and resilience
CO ₂	CO₂e impact	 Reduces GHG and waste gases, reuses 4.3 million tons of manure, and sequesters major carbon via desert restoration
	Innovation	 Pioneers a multi-capital framework that integrates natural, social, human, and produced capital into corporate decisions
((1)	Risks	 Key risks include exposure of negative impacts through transparent reporting, but these are transformed into opportunities via mitigation actions
	Scalability	 Replicates the framework globally across agri-food sectors, embeds data-driven risk, and enhances impact management

^{1.} The Economics of Ecosystems and Biodiversity; 2. Sustainable Development Goals; 3. Kunming-Montreal Global Biodiversity Framework

CNP Assurances BU Latam, Brazil

Objective

Strengthening sustainable production chains in Amazonas with five community associations

Implemented, generating 1st results

Stakeholders

- CNP Seguradora as main sponsor and project lead
- CNP Latam as financial contributor
- IDESAM (NGO) for technical execution and local expertise
- Community associations for implementation and coordination
- Indigenous peoples and local/traditional communities as direct beneficiaries and producers
- Small and Medium Enterprises (SMEs) as participants in sustainable value chains

Implementation	
Step	Period
Technical assistance and logistical support	06/24 - 06/25
2 Structural improvements and installation of photovoltaic syst.	08/24 - 03/25
3 Agroforestry planting in Uatumã	03/25 - 04/25
Improved management and organizations	06/24 - 06/25
5 Market research	01/25 - 06/25

	Indicators	
KPI	Unity	Current values
Value chains developed	#	4
Capacitation	# of trained people	691
Cost reduction	Avg reduction in oil mill prod. costs	-20%
Economic development	Value marketed by organizations (US\$)	500,000

	WG alignment	 Aligns with community-based bioeconomy, linking environmental impact, productive inclusion, and long-term development
	Economic impact	 Contributes to community well-being through a philanthropic approach without immediate financial returns
CO ₂	CO₂e impact	 Reduces CO₂e emissions by fostering sustainable production practices
	Innovation	 Promotes innovation through photovoltaic systems, efficient machinery, and local management systems
((1)	Risks	 Key risks include scalability, community engagement, and long-term funding needs

management aligned with the Paris Agreement

• Enables wider adoption by multiple companies, supporting sustainable resource

Key aspects

Scalability

Scalable investment model for indigenous climate finance

Earthly Treasure, Suriname Objective

IPLC-led finance mechanism that monetizes ecosystem stewardship via tradable Biodiversity Units (BUs), anchoring private portfolios in a nature-positive asset class

Under implementation

Stakeholders

- Earthly Treasure / The Landbanking Group as platform developer, issuer and convener
- Alalapadu & wider Sipaliwini IPLCs as rights holders, stewards and local monitors
- **BioTara** as policy/dialogue partner
- SGS & scientific partners as MRV/verification and method advisers
- Government of Suriname as regulator
- Foundation Le Grammont; Legacy Landscape Fund, Rainforest Trust (pending) as early finance

THE
LANDBANKING
GROUP

	Implementation		
Step		Period	
1	FPIC, governance & community contracts	11/24 – 11/25	
2	Training & baseline (hardware install; monitoring)	02/25 – 07/25	
3	Data analysis & BU issuance on Landler platform	08/25 – 10/26 😞	
4	Expansion to Sipaliwini communities; annual payouts & community projects	11/25 – 07/29 😑	

Indicators		
KPI	Unity	Current values
Hectares protected	Hectares	250,000
CO ₂ e stored	MtCO ₂	91–184
Local monitors	#	25 employed/ trained
Ecological integrity	Score	>0.8 baseline

		Key aspects
(WG alignment	 Mobilizes climate finance to protect Amazonian rainforests and supports indigenous stewardship; strengthens community resilience and values ecosystem services through a rights- based, people-first approach
	Economic impact	 Creates a recurring revenue stream (≥80% of BU proceeds to IPLCs) and seasonal jobs for local monitors, strengthening community governance
CO ₂	CO₂e impact	 Protects 250,000 hectares that currently store ~91–184 million tons of CO₂e and sequesters ~0.75–1.5 million tons of CO₂e per year, while expansion targets 775,000 hectares
J	Innovation	 Combines advanced MRV (eDNA, camera traps, bio-acoustics, remote sensing) with tradable Biodiversity Units on the Landler platform—creating a nature-equity asset class
((1)	Risks	 Key risks include external extractive pressure, demand uncertainty for Biodiversity Units, community withdrawal, governance capture, and policy instability
	Scalability	 Implements a five-year phased plan with MRV, training, and issuance that replicates across Sipaliwini (#775,000 hectares) and other countries, while outcome-based finance attracts private portfolios

VBIO.eco – Showcase of Brazilian Biodiversity

GSS, Brazil

Objective

Connect socio-biodiversity projects with corporate sponsors through an online platform that ensures compliance, transparent monitoring, and measurable impact

Implemented, generating first results

Stakeholders

- GSS Carbono e Bioinovação (VBIO.eco) as platform operator and technical assistance provider
- Corporate sponsors as financiers and impact purchasers
- NGOs / associations / cooperatives as project proponents and implementers
- Indigenous peoples & local/traditional communities as project leaders and beneficiaries
- Universities/research bodies as monitoring and MEL partners
- Public sector (Law 13.123/2015) as compliance and benefit-sharing authority

	Implementatio	on
Ste	p	Period
1	Platform concept & launch (COP22 & first version)	2016 – 2019
2	First benefit-sharing & voluntary support projects	2019 – 2023
3	Monitoring framework (MEL) & supply chain studies	2023 – 2024
4	New platform restructuring & scale-up	2025 – 2026 🗧

Indicators		
KPI	Unity	Current values
Families benefited	#	5,100
Projects supported	#	75
Native area restored	Hectares	1,076.6
Native area conserved	Hectares	5,909

Key aspects	,
-------------	---

(WG alignment	 Strengthens socio-biodiversity chains, supports fair benefit-sharing, and contributes to climate and restoration goals
	Economic impact	 Mobilizes over US\$ 3 million, reduces transaction costs for companies, and enables shared funding for projects
CO ₂	CO₂e impact	 Restores and conserves more than 7,000 hectares of native areas, and protects 150 native species across 6 Brazilian biomes
	Innovation	 Provides a digital platform with impact monitoring, transparent reporting, and technical support to scale socio-biodiversity finance
((4)	Risks	 Key risks include dependence on continuous funding rounds, limited corporate engagement, and vulnerability to climate change
	Scalability	 Expands across Latin America (Peru, Colombia) with potential to engage more sponsors and communities

External links: VBio Website

Inter-American
Development Bank,
Amazonian countries
Objective

Unlocking private capital by valuing bioeconomy products and services with climate mitigation and adaptation results in Amazonia

Under implementation

- Green Climate Fund (GCF) as anchor financier and enabler
- IDB as fund manager
- National Governments & NDBs² as cofinanciers & executors
- Civil Society, NGOs, Academia, Indigenous organizations as implementation partners
- SMEs & Smallholder Farmers as direct beneficiaries
- Women & Youth as target beneficiaries

	Implementation		
Step		Period	
1	Fund approval & design	2020 – 2021	✓
2	First GCF disbursement	2022	•
3	Mid-term evaluation	2026	(2)
4	End of implementation	2029	8

KPI	Unity	Current values
Direct beneficiaries	#	191,952 ¹
Emissions avoided/reduced	tCO ₂ e /year	6.2 M¹
Resources to be leveraged	US\$	719.1 M¹

		Key aspects
	WG alignment	 Elevates bioeconomy to the COP spotlight by financing inclusive, low-carbon value chains that cut emissions, curb deforestation, restore biodiversity, and uphold Indigenous and human rights
	Economic impact	 Leverages ~US\$ 719 million by de-risking early-stage ventures and attracting sustained private investment, building on a fund envelop of US\$ 598 million
CO ₂	CO₂e impact	 Avoids or reduces 6.2 million tCO₂e emissions annually by conserving ecosystems and supporting sustainable production
	Innovation	 Innovates with financing instruments (loans, grants, equity, technical cooperation) for financing solutions for bio-businesses
	Risks	 Key risks include linked to multi-country governance, early-stage ventures, and enabling policy gaps
	Scalability	 Demonstrates a replicable model as a "lighthouse for conservation finance", creating replicable mechanisms across Amazonia or other biodiversity-rich and climate- vulnerable regions

BB Amazônia

Inter-American
Development Bank, Brazil

Objective

Credit program to expand financing for biobusinesses and sustainable infrastructure across bioeconomy value chains in Brazil's Legal Amazon

Under implementation

Stakeholders

- Banco do Brasil (BB) as executing financial institution
- **IDB** as finance provider and technical cooperation partner
- Indigenous Peoples, Local/Traditional Communities, SMEs, Smallholder Farmers, Women as target beneficiaries

Implementation Step Period 1 Investment loan approval (IDB) 2025 2 Credit disbursement & program implementation 2025 = 2029

	Indicator	S
KPI	Unity	Current values
Land under management	Hectares	8,600 ¹
Emissions avoided/reduced	tCO ₂ e	867,800¹
Bio-businesses benefited	#	11,700 ¹

		Key aspects
	WG alignment	 Elevates bioeconomy to the COP spotlight by financing inclusive, low-carbon value chains that cut emissions, curb deforestation and restore biodiversity
	Economic impact	 Leverages ~US\$ 160 million through a financing structure that combines a US\$ 150 million credit line for sub-projects with a US\$ 8.8 million investment grant for risk mitigation and US\$ 1.5 million in technical cooperation
CO ₂	CO₂e impact	 Avoids 867,800 tCO₂e by conserving forests and managing 8,600 hectares sustainably
	Innovation	 Pioneer a blended-credit model that channels BB's portfolio analytics, risk-mitigating grants, covenants to finance bio-business assets and infrastructure and MRV-backed sustainability
	Risks	 Key risks include elite capture, land-tenure conflicts, and deforestation leakage; manage credit defaults, FX and policy shifts; prevent greenwashing
	Scalability	 Demonstrates a replicable model to other biodiversity-rich and climate-vulnerable regions by blending credit lines with de-risking instruments and technical cooperation through partnerships between local financial institutions and multilateral banks

1. Current projection External links: IDB; IDB

Financing program for productive and sustainable development

Inter-American
Development Bank, Suriname

Objective

Credit and technical assistance program to expand MSME² access to productive investments, with emphasis on bio-businesses

Under implementation

Stakeholders

- National Development Bank of Suriname (NOB) as public intermediary and executing financial institution
- **IDB** as finance provider and technical cooperation partner
- MSMEs as direct beneficiaries of loans

Implementation				
Step		Period		
1	Investment loan approval (IDB)	2024	•	
2	Disbursement period	2025 - 2029	(2)	

KPI	Unity	Current values
Land under management	Hectares	2,0921
Emissions avoided/reduced	tCO ₂ e	50,736 ¹
Bio-businesses benefited	# MSMEs	100 ¹

		Key aspects
	WG alignment	 Mobilizes blended climate finance to scale bioeconomy MSMEs, deploys sustainable value chains, and delivers climate, biodiversity and land use benefits
	Economic impact	 De-risks credit via NOB to lower borrowing costs, boosts MSME productivity, and demonstrates viable bio-business models
(CO ₂)	CO₂e impact	 Reduces ~50,736 tons of CO₂e by financing forest-positive MSMEs with de-risked credit and technical assistance, and supports sustainable harvesting, processing, and restoration
	Innovation	 Innovates with blended finance (loan, grant, technical assistance) to de-risk bio-business lending, equips NOB with risk tools, and attracts private finance to forest-positive outcomes
((Risks	Key risks include credit and foreign exchange risks, limited bankable pipeline, NOB capacity gaps, regulatory shifts, land/tenure safeguards, and climate/commodity shocks
	Scalability	Demonstrates a replicable model for other forest-rich regions, as it combines standardized MSME credit mechanisms, blended finance instruments, and institutional capacity- building

External links: IDB; IDB

Produbanco - Loan with Biodiversity UoP

IFC, Ecuador

Objective

Investment in Produbanco to drive sustainable growth in Ecuador through biodiversity, climate-smart agriculture, and SME financing, especially women-owned

Under planning

- IFC for providing loan and credit insurance
- **Produbanco** as intermediary, facilitator and portfolio manager
- **SMEs** for projects implementation to generate biodiversity co-benefits
- Agricultural producers for a more resilient and sustainable food production system
- NGOs as technical partners biodiversity conservation and sustainable land management practices

Implementation		
Step		Period
1	Agreement between IFC and Produbanco	01/25 -03/25
2	Launch of biodiversity portfolio and identification of projects	06/25 -12/25 ╒
3	Financing of initial selected projects	01/26 -06/26 😑
4	Monitoring and evaluation framework implementation	07/26 -12/26 (

KPI	Unity	Current values
Finance women- owned SMEs	#	TBD

		Key aspects
	WG alignment	 Mobilize sustainable finance by supporting projects that seek to generate biodiversity co- benefits, improve sustainable productive land use and management and improve financial inclusion of SMEs with a focus on women
	Economic impact	 Structures financing to be profitable and sustainable, mitigates credit risk through IFC credit insurance, diversifies exposure across SMEs and women-owned businesses, and secures disbursement via milestone-based loan structuring
CO ₂	CO₂e impact	 Reduces greenhouse gas emissions by promoting climate-smart agriculture and sustainable land management practices
	Innovation	 Introduces the first financial instrument in Ecuador with fundings earmarked for biodiversity finance
	Risks	 Key risks include credit risk of borrowers, project execution delays, regulatory changes, and environmental risk assessments
	Scalability	 Demonstrates a replicable financial model that addresses biodiversity conservation and sustainable management of living natural resources

BTG Pactual TIG - the reforestation fund loan

IFC, Brazil

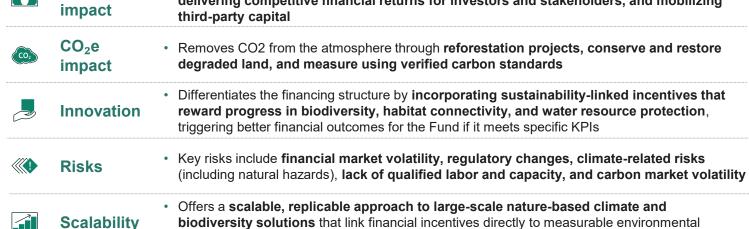
Objective

Sustainability-linked loan provided by IFC to support the BTG Pactual Timberland Investment Group's Latin America Reforestation Strategy

Under implementation

Stakeholders

- IFC as principal debt provider
- BTG Pactual Timberland Investment Group (TIG) as fund manager and project implementer
- Conservation International as NGO partner bringing conservation expertise
- Microsoft as corporate partner and offtaker
- Netherlands Development Finance Company (FMO) as development finance partner
- UK Government's Mobilizing Finance for Forests facility to catalyze private capital
- Forest Stewardship Council (FSC) as certifier
- Local and Indigenous Communities as land stewards and direct beneficiaries



	Implementatio	n
Step		Period
1	Establish loan framework and sustainability targets	06/24 -06/24
2	Mobilize funds and commit the loans	06/24 - 06/24
3	Deploy funds into targeted reforestation/restoration projects	01/25 - 12/25 🤤
4	Measure environmental outcomes	01/25 - 12/36 😑
5	Report sustainability metrics and outcomes annually	01/25 - 12/36 (

Indicator	rs .
Unity	Current values
Hectares	TBD
Hectares	TBD
	TBD
	Unity Hectares

	Ney aspects
WG alignment	 Delivers positive environmental impact through reforestation, enhances biodiversity, and generates significant socio-economic benefits in local communities
Economic impact	 Maximizes the positive impact of restoration efforts through a sustainability-linked structure via delivering competitive financial returns for investors and stakeholders, and mobilizing third-party capital

Kay senacte

while

outcomes and emissions reductions

IFC, Brazil

Objective

Blended finance instrument to strengthen socio-biodiversity supply chains in the Amazon through credit access and technical assistance

Implemented, generating 1st results

- IFC as first International Finance Institution investor
- Natura as anchor buyer and investor
- VERT CAPITAL for structuring and managing the CRA¹
- FUNBIO for technical assistance to agro-extractivist cooperatives
- Cooperatives and Associations as borrowers and beneficiaries of technical assistance
- Traditional communities and family farmers as end-beneficiaries
- IDB Invest, Fundo Vale, Global Environment Facility (GEF), Good Energies Foundation as investors and partners

Implementation			
Step		Period	
1	Mechanism structuring and CRA issuance	10/23 -05/24	⊘
2	Adjustments of financial terms	10/24 -02/25	✓
3	Community access to CRA credits	12/23 – ongoing	\(\in\)
4	Strengthening E&S standards and supervision	04/24 - ongoing	8

Indicators				
KPI	Unity	Current values		
Families reached	# families	4,759		
Estimated carbon removal	tCO₂e/year	26,658,217		
Technical assistance	# cooperatives	16		

	Key aspects			
	WG alignment	 Aligns with bioeconomy objectives enhancing climate resilience through sustainable finance mechanisms 		
	Economic impact	Provides affordable financing at a sustainable interest rate (10%)		
CO2	CO₂e impact	 Reduces CO2 emissions by an estimated 26,658,217 tons CO₂e per year by preventing deforestation and improving forest management 		
	Innovation	 Establishes an innovative blended finance instrument, leveraging Natura's socio-biodiversity input purchase forecast as a guarantee and IFC's expertise to sustainably finance rural producers 		
((1)	Risks	 Key risks include supplier exclusion, capacity gaps, environmental and social challenges, access to finance, and low offtaker participation 		
	Scalability	 Expands access to finance, build a financial track record for agroextractivist cooperatives and associations, reduce reliance on concessional funds, and enhance emissions reductions and resource efficiency 		

Blue ocean fund – Venture capital for ocean biodiversity SWEN Capital, France

Objective

Venture capital fund that invests equity into 20–25 early-stage companies developing ocean-focused climate and biodiversity innovations

Mature, generating stable results

- SWEN Capital Partners as fund manager and steward of impact strategy
- Institutional LPs & Bpifrance as capital providers and co-investors
- IFREMER as scientific partner and diligence support
- Portfolio startups (20–25 ventures) as solution developers and impact drivers
- NGOs / 1000 Ocean Startups as ecosystem builders and pipeline partners
- Public regulators (EU) as disclosure/Article 9 oversight

Implementation			
Step		Period	
1	Fund design & first close (€120M)	2021	❖
2	Investment in 14–18 ventures	2022 – 2023	•
3	Impact KPIs (Ocean Navigator) & reporting	2022 – 2024	⊘
4	Scale-up: Blue Ocean 2 & global startup ecosystem	2025 – 2027	a

Indicators				
KPI	Unity	Current values		
CO ₂ avoided	tCO ₂ e	318,000		
Biodiversity preserved	Tons biomass	3–20T		
Investments made	# Companies	14–18 startups backed		
Fund size	€	170M closed		

	Key aspects		
	WG alignment	 Mobilizes climate finance to back early-stage, ocean-positive innovations that protect biodiversity and drive sustainable solutions 	
	Economic impact	• Deploys €170M into 18 startups, delivering competitive LP returns and achieving two exits	
CO ₂	CO₂e impact	• Avoids 318,000 tCO₂e via decarbonization and circular ocean solutions	
	Innovation	 Leverages pioneering thematic VC strategies such as eDNA, cultivated seafood, marine decarbonization, and real-time monitoring 	
((1)	Risks	 Key risks include finding pipeline of investable ventures, market adoption of novel ocean technologies, regulatory hurdles in blue economy 	
	Scalability	 Demonstrates a replicable model by expanding into Blue Ocean 2 fund, targeting 20–25 new ventures and building a global ecosystem of 1000 Ocean Startups 	

Biodiversity units' pilot to strengthen resilience and income for forest

Terrasos, Brazil

Objective

Biodiversity habitat bank to generate and sell certified biodiversity units through community partnerships, private investment, and tech-enabled monitoring

Under implementation

Stakeholders

- **Terrasos** as project developer and coordinator
- Natura as offtaker and value chain integrator
- IDB Lab for finance and risk mitigation
- Local / Traditional Communities as implementer

Implementation			
Step		Period	
1	Stakeholder engagement and gov. scheme for habitat bank	12/24 -03/25	
2	Identify areas and sign binding agreements w/ prop. owners	01/25 -10/25 ╒	
3	Secure 50% of biodiversity units in offtake commitments	10/25 –12/25	
4	Management, monitoring & evaluation plan	01/26 -03/26	

Scalability

Indicators				
KPI	Unity	Current values		
Carbon reduction	tCO₂e over 5 years	55,000-73,000 ¹		
Land assessed	Hectares	3,400		
Habitat bank	Hectares	500 ¹		

Key	aspects
-----	---------

	WG alignment	 Captures CO2 while boosting biodiversity and strengthening resilience of forest- dependent communities in Pará through sustainable forest management
	Economic impact	 Improves corporate value chain resilience by mobilizing US\$ 15M in private investment, with Natura anchoring demand for biodiversity units and IDB Lab de-risking early- stage structuring
CO ₂	CO₂e impact	 Sequesters 6–8 tC/ha/year across 500 ha (equivalent to 55,000–73,000 tCO₂e over 5 years), while restoring and conserving at least 1,000 ha for 30 years
	Innovation	 Pioneers one of Brazil's first biodiversity unit models, leveraging blockchain traceability, TNFD/SBTN/GRI alignment, and tech-enabled MRV to ensure transparent reporting on biodiversity, carbon, and long-term financing
(((!)	Risks	 Key risks include regulatory uncertainty, operational challenges in remote Amazon areas, climate variability, land tenure issues, and evolving market demand for biodiversity units

• Demonstrates a replicable model to other regions because it combines standardized

protocols, traceability technology, and alignment with international frameworks

Vale, Brazil

Objective

Accelerator program for impact businesses in the Amazon to develop sustainable solutions for the sociobioeconomy

Mature, generating stable results

Stakeholders

- Idesam as structuring and implementation partner
- Vale & impact investors as funders and ecosystem partners
- Portfolio startups/SMEs as accelerated businesses
- Indigenous peoples & local/traditional communities as beneficiaries and enterprise leaders
- Universities/research institutions as mentors and knowledge partners
- **Public sector** as policy alignment and coinvestment enablers
- NGOs / ecosystem builders as pipeline and capacity partners

	Implementation			
Step		Period		
1	Mapping & selection of impact businesses	2021–2025	•	
2	Pre-acceleration & entry investments	2021–2026	\varepsilon	
3	Acceleration cycles, mentoring & portfolio management	2021–2030	8	
4	Co-investment, follow-on & strategic networking	2022–2030	8	

Indicators				
KPI	Unity	Current values		
Forests conserved/ restored	Hectares	433,000		
Families benefited		713		
Businesses accelerated	#	17		
Leveraged capital	R\$	19.8M		

Key aspects

	WG alignment	 Advances Brazil's Sociobioeconomy Plan, fostering inclusive value chains linked to conservation and restoration
	Economic impact	 Generates R\$19.8 million in leveraged capital, supports #17 enterprises, and creates investment opportunities in bioeconomy sectors
CO ₂	CO₂e impact	 Conserves or restores 433,000 hectares, indirectly reduces emissions, and preserves biodiversity
	Innovation	 Blends finance models (grants + private capital) with hands-on acceleration, and combines financial returns with socio-environmental goals
((1)	Risks	 Key risks include limited investment pipeline, low risk appetite among investors, and financial fragility of early-stage businesses
	Scalability	 Designs mechanisms for replication, leverages philanthropic and commercial capital, and expands support across Amazon bioeconomy chains

External links: Report 2024

Sustenta.bio

Vale, Brazil

Objective

Multi-stakeholder initiative funded through philanthropic grants to strengthen sociobiodiversity production in Amazon protected areas

Under implementation

Stakeholders

- · ICMBio as co-lead
- Fundo Vale as co-lead and grant provider
- Amoreri (NGO) as local partner
- Asproc (NGO) as community-based organization
- Idesam (NGO) as technical partner
- IFT (NGO) as knowledge provider
- Instituto Mamirauá (NGO) as research and monitoring partner
- OPAN (NGO) as facilitator for indigenous and traditional peoples' participation
- Local / Traditional Communities as producers and implementers of sociobiodiversity chains

	Implementation				
Ste	p	Period			
1	Form the alliance & define governance	2023 - 2024	⊘		
2	Co-design & approve community proposals	2023 – 2024	②		
3	Strengthen productive arrangements	2024 – 2027	\epsilon		
4	Ongoing monitoring & field visits	2024 – 2027	8		
5	Measure impacts & attract new investors	2025 – 2027	(2)		

Indicators			
KPI	Unity	Current values	
Number of people impacted	# families	3,000 ¹	
Income increase	Avg income increase in %	50% ¹	
Production volume growth	Avg income increase in %	50% ¹	
New investors attracted	# investors	+2	

	WG alignment	 Strengthens the sociobiodiversity economy and qualify production with access to new markets, generating increased social, economic, and environmental benefits for community enterprises in protected areas
	Economic impact	 Recognizes that these businesses are still in pre-competitive stages and require philanthropic investment, while value the Amazon rainforest at R\$ 1.5 trillion a year, according to World Bank estimates
CO ₂	CO ₂ e impact	 Quantifies and communicates the contribution of standing forest preservation to reducing greenhouse gas emissions
	Innovation	 Promotes public-private partnerships to strengthen production chains in protected areas, a strategy still little used in Brazil but with potential to boost the forest economy

interest in paying for sociobiodiversity products

Key risks include impacts of climate change on production chains and lack of market

· Scales up production chains in protected areas of the Amazon to keep the forest

standing and supports Brazil in tackling its largest emissions source — deforestation

Key aspects

61

Risks

Scalability

Bio-Economy in Action

Zurich Insurance Group, Global

Objective

Corporate strategy to achieve net-zero operations by 2030 by investing in early, science-based carbon removal (CDR) solutions, funded through an internal carbon price

Implemented, generating first results

Stakeholders

- **Zurich Insurance Group** as the project leader, funder, and climate strategy driver
- Institutions as direct recipients of funding to scale high-quality, science-based carbon removal solutions

Implementation	
	Period
efine CDR strategy and execute re-purchase agreements	01/21 – 12/29 (

Step

Indicators				
KPI	Unity	Current values		
CO ₂ e emissions against 2019 baseline	% reduction	60% (2025) 70% (2029) 100% (net-zero)		

Key aspects			
	SB COP alignment	Supports scalable bioeconomy solutions that enable carbon capture and removal	
	Economic impact	 Aligns climate goals with profitability by using internal carbon pricing, funding CDR through an internal carbon fund (>US\$ 2mn in 2024 at US\$ 55/tCO₂e), and progressively increasing the carbon price through 2030 	
CO ₂	CO₂e impact	 Reduces CO₂ impact by cutting absolute emissions 60% by 2025, 70% by 2029, and achieving net-zero operations by 2030, complemented by carbon removal investments 	
	Innovation	 Drives innovation by investing in high-quality, science-based CDR solutions that scale new technologies, set higher standards, and inspire wider net-zero adoption 	
((()	Risks	Key risks include technology and delivery risk, as well as measurement challenges	
	Scalability of impact	 Scales impact by investing in carbon removal that supports net-zero goals, boosts innovation, aids rural economies, builds resilience, and delivers affordability and social benefits 	

Portfolio of Cases

Positioning the bioeconomy as a strategic pillar – Technology

Monitoring medical patents containing biodiversity ABIFINA, Brazil

Objective

Database with Brazilian patents for medicines using native and exotic biodiversity as active ingredients, identifying patent holders, species used, and their applications

Mature, generating stable results

- ABIFINA as project owner and database developer
- Academia / Research Institutions for scientific validation and studies
- Large Corporations as potential technology adopters and commercial partners

Implementation			
Step		Period	
1	Construction of the database	03/22 - 07/24	
2	Weekly updates	03/22 - 07/26 휻	
3	Annual reports	07/25 - 07/26 怠	

Indicators				
KPI	Unity	Current values		
Species identification	# patents	1500		

		Key aspects
	WG alignment	 Contributes directly to the bioeconomy and health resilience by fostering biotech solutions and enabling new technological applications
	Economic impact	 Leverages ABIFINA's own budget and the work of the Intellectual Property specialist who builds, updates, and analyzes the database weekly
CO ₂	CO₂e impact	 Promotes research and development projects to strengthen the bioeconomy value chain with environmental and social responsibility, indirectly reducing CO₂e impacts
	Innovation	 Brings identified and mapped information on promising native and exotic species, SISGEN registrations, and therapeutic indications to foster innovation
((1)	Risks	No relevant risks identified in the project implementation
	Scalability	 Provides information to enhance Brazil's productive capacity using native and exotic species for medicine production

Geospatial Intelligence to Power the Amazon Bioeconomy Bioverse, Brazil

Objective

Geospatial intelligence tools to help forest cooperatives harvest and sell non-timber forest products

Mature, generating stable results

- Bioverse as technology provider and project lead
- Indigenous peoples & local/traditional communities as harvesting cooperatives and primary users
- SMEs in NTFP chains as supply-chain partners and adopters
- Public sector/regulators as compliance and permitting bodies

	Implementation				
Ste	p	Period			
1	UAV data collection & AI model training	2025	Ø		
2	Ground truth validation & forest inventory	2025	Ø		
3	Mobile app deployment & harvest support	2025	Ø		
4	Supply chain integration & scaling	2025	8		

Indicators				
KPI	Unity	Current values		
Area scanned	Hectares	60,000		
Species monitored	#	10		
Harvesters engaged	#	Cooperative- level		
Revenue potential	Multiplier	10–40 X		

Key aspects			
	WG alignment	 Strengthens inclusive bioeconomy chains, enables sustainable forest use, and supports biodiversity-based livelihoods 	
	Economic impact	 Reveals 10–40 times more earning potential for cooperatives by improving harvest predictability and efficiency 	
CO2	CO₂e impact	 Focuses on biodiversity monitoring and conservation of non-timber forest products rather than carbon, and promotes sustainable forest management 	
	Innovation	 Provides a proprietary multispectral unmanned aerial vehicle payload, unique mid-canopy palm detection algorithms, and a field-tested app for cooperative use 	
((1)	Risks	 Key risks include exposure to climate events (droughts, fires) and criminal activity (illegal mining, logging, trafficking) that may disrupt operations 	
	Scalability	 Delivers technology ready for rapid replication across the Amazon and other tropical regions, and adapts for multi-country deployment 	

The Sustainable Biorefinery

Borregaard, Norway

Objective

Borregaard ASA's biorefinery turning wood waste into sustainable biochemicals that replace petroleum products across multiple industries

Implemented, generating first results

Stakeholders

- Borregaard ASA as operator of the biorefinery
- Confederation of Norwegian Enterprise as advisors
- Government & Public Sector for co-finance, regulation, and enabling compliance

Implementation				
Step	Period			
1 Pilot phase	2013 - 2017			
2 Commercial demonstration	2016 - 2020			
3 Scaling and expansion	2020 - 2023			
4 Global expansion	2024 - 2027 😥			

Indicators				
KPI	Unity	Current values		
CO ₂ Reduction	% reduction vs. petroleum alternatives	70%		
IRR	%	>15%		

Key aspects

		3 1
	WG alignment	 Aligns with the bioeconomy by transforming renewable wood residues into high-value biochemicals that replace fossil-based inputs across industries, thereby fostering a circular, resource-efficient economy
	Economic impact	 Achieves a ROCE and IRR above 15% pre-tax on expansion investments, while scaling an innovation that, despite high infrastructure costs, has shown steadily increasing turnover and strong market demand
CO ₂	CO₂e impact	 Shows a CO₂ impact of around 70% reduction compared to petroleum-based alternatives, demonstrated with the LignoBrite bio-based polymer and validated by independent lifecycle analysis
	Innovation	 Stands out by fully valorizing wood into bio-based products and pioneering innovations like LignoBrite with 70% CO₂ reduction, offering multi-sector petroleum-free alternatives that close the implementation gap
((Risks	 Key risks include high capital costs of infrastructure, challenges in scaling, dependence on regulatory support, uncertain market adoption, and growing global competition
	Scalability	 Supports the Paris Agreement's climate targets while promoting efficient natural resource management through full utilization of wood residues and displacement of fossil feedstocks across multiple industries

I'm green™ - leveraging bio-based chemicals

Braskem, Brazil

Objective

Bio-based polyethylene and expanded portfolio of plant-based chemicals, which deliver fossil-equivalent performance, using sugarcane ethanol

Mature, generating stable results

Stakeholders

- Braskem as project leader and producer
- Sustainea as financing structure
- Sojitz as investors
- Large corporations, SMEs as buyers and sugarcane providers

Implementation				
Step		Period		
1 T	echnological research & ilot plant	2006 -2030	⊘	
2 C	construction & assembly	2009 -2010	\bigcirc	
	perational industrial plant	2010 -2030	⊘	
	apacity increase	2023	\bigcirc	
	ortfolio expansion and xpansion target	2023 - ongoing	(2)	

Indicators				
KPI	Unity	Current values		
GHG emissions avoided	Tons CO₂e	~8 million		
Carbon footprint	Tons CO ₂ e capt./ t of PE¹ produced	2.12		
	# countries	+40		
Diversified customer portfolio	# clients	+200		

Key aspects	Kev	/ aspects
-------------	-----	-----------

	WG alignment	 Showcases a technological solution that uses sugarcane on <1% of Brazil's land to produce bio-based plastics that replace fossil fuel derivatives and create inclusive value chains for farmers and industries worldwide
	Economic impact	 Aligns with private sector profitability by combining US\$ 487M + US\$ 87M investments with a 60/40–70/30 debt-to-equity financing model, leverage incentives to lower costs
CO ₂	CO₂e impact	 Avoids the emission of ~8 mm t CO₂e since 2010 with I'm green[™] bio-based PE, and capture 2.12 t CO₂e for every ton of PE produced, measured up to Braskem's gate
	Innovation	 Pioneers the world's first industrial-scale bio-based polyethylene, validates it through LCA, and expands into drop-in bio-based MEG & MPG³ via Sustainea's technology, which integrates seamlessly into existing supply chains
(((1)	Risks	No relevant risks identified in the project implementation
	_	Demonstrates a replicable model that could be scaled across industries, cutting emissions

with I'm green™ bio-based plastics while expanding impact through resource-efficient

67

sugarcane feedstock

Scalability

AçaíBot

KAA TECH, Brazil

Objective

Low-cost, portable robot ("AçaíBot") that climbs palms, cuts and collects açaí clusters to increase yields and incomes

Under planning

Stakeholders

- KAA TECH as project leader, technology developer, and implementation manager
- Local/Traditional communities as primary AçaíBot operators

Implementation				
Ste	p	Period		
Assessment & feasibility		2022		
2	Impct assessments; technology customization	2022 - 2024 🗸		
3	Community meetings; site selection	2024 - 2025 ╒		
4	Deploy 100 units; training program; monitoring & analysis	2026		
5	Scale to 1,000 units; partnerships & training	2026 - 2027		

KPI	Unity	Current values
Productivity increase	% harvested açaí vs. manual	+122% Native +180% Cultivated

Key aspects			
	WG alignment	Advances standing-forest bioeconomy with safer, more profitable extraction; values women's work and community income	
	Economic impact	 Replaces risky manual climbing; boosts yields/quality and reduce labor time; increases household cash flow and accelerates capital recovery 	
CO ₂	CO₂e impact	Reduces deforestation pressure by valuing forest as a productive asset; encourages sustainable management and lower waste	
	Innovation	 Transforms açaí harvesting with a lightweight, rainforest-adapted robot that triples productivity and improves safety 	
((1)	Risks	 Key risks include device reliability/maintenance in humid rainforest, supply-chain and financing, land tenure/permits, local price sensitivity (R\$/kg) 	
	Scalability	 Demonstrates a replicable model for cohort expansion (from 100 to 1,000 units) by leveraging a local trainer approach, implementing continuous M&E, and building partnerships with cooperatives, public programs, and offtakers 	

External links: <u>Instagram; KAATECH</u>; <u>Youtube</u>; <u>Amazônia</u>; <u>SENAR</u>; <u>Kalkine</u>; <u>PARÁ</u>; <u>Diário do Pará</u>; <u>Belem-Negocios</u>; REAL RADIO; SENAR; AGENCIAPARA

Amazon 4.0: remote bioactive drying monitor and AI drones for forest inventory

Natura, Brazil

Objective

IoT devices for remote bioactive drying and Alpowered drones for precise, large scale and high-speed forest inventory

Implemented, generating 1st results

- Natura as project leader and idealizer
- BNDES for co-financing
- **EMBRAPII** for applied research & industrial innovation support
- **FINEP** for funding
- SENAI and Bioverse as technical partner
- Local & Traditional Communities / Smallholder Farmers as direct users

Implementation			
Ste	p	Period	
1	Device development and testing requirements gathering	2021 - 2022	⊘
2	Initial viability assessments and drone testing	2021 - 2022	⊘
3	Field testing IoT and drones with communities	2023 - 2025	(2)
4	Scaling up	2025 – ongoing	(2)

	Indicato	ors
KPI	Unity	Current values
Time reduction	%	99%
Data accuracy	%	95%

Key aspects		
	WG alignment	 Conserves standing forests with IoT and AI, reducing emissions, preserving species, and generating community income
	Economic impact	 Cuts inventory time by ~99% and cycle time from 9 months to 2 day, improving quality, reducing waste, and delivering strong financial and supply-chain returns
CO ₂	CO₂e impact	 Reduces carbon impact by valuing standing forests as living assets, avoiding emissions from deforestation
	Innovation	 Boosts tree-species identification accuracy to ~95% with AI drones and more effective drying process for bioactive production, empowering Amazon communities and scaling inclusive conservation
((1)	Risks	 Key risks include unclear land tenure, high upfront costs, scarce skilled labor, weak market demand, environmental insecurity, and policy delays
	Scalability	 Demonstrates a replicable Drone/Al model that reduces survey trips by ~99% and standardize quality with IoT, cutting waste and travel emissions and enabling data-driven, Paris-aligned resource management

More intelligence, more cocoa

Nestlé, Brazil

Objective

Project under the Nestlé Cocoa Plan, partnering with over 100 family-owned cocoa farms to boost productivity and profitability, supported by a 24/7 chatbot TA¹ for participants and the other 6,500 Nestlé Cocoa Plan farmers

Implemented, generating 1st results

Stakeholders

- Nestlé Brazil as project leader and financier
- Labor Rural as technical advisor
- Cool Farm Tool as measuring tool for carbon
- Traditional communities & farmers as producers

Implementation		
Step	Period	
Selection of farms, kick-off and onsite visit	01/23 – 06/23	
2 Donation of seedlings and intermediate results report	01/24 – 10/24 🗸	
Cool farm tool (CO2 measurement) and onsite visit	11/24 – 11/26 (
4 Final report – consolidated results	11/26 – 12/26 😑	

Indicators		
KPI	Unity	Current values
Farm productivity	% increase in t of cocoa/ha	~18%
Farm profitability	% increase in net profit margin	~44%

Key aspects		
	WG alignment	 Combines data-driven sustainable cocoa farming with productivity gains and active engagement of smallholder farmers and local communities, contributing to climate mitigation, biodiversity conservation, efficient land use, and improved livelihoods
	Economic impact	 Delivers a 44% increase in net profit margin and an 18% productivity gain in its first year (2023 x 2024 harvest), proving a strong return on investment through affordable, scalable interventions
CO ₂	CO₂e impact	 Establishes a carbon footprint baseline for Brazilian cocoa farms with the Cool Farm Tool, set reduction targets, and promote sustainable practices to lower emissions
	Innovation	 Provides free technical assistance 24/7 through the Theo Chatbot, enables real-time CO₂ measurement with the Cool Farm Tool, and distributes high-productivity clonal seedlings to boost yields without expanding land use
((1)	Risks	 Key risks include farmer turnover, low engagement, and adaption practices to different types of farmers profiles
	Scalability	 Demonstrates a replicable model that applies CO2 monitoring via the Cool Farm Tool, deploys high-yield clonal seedlings, and scales regenerative practices to decrease agricultural GHG related emissions

1. Technical assistance External links: Press release

Case study of circular bioeconomy

Novamont, Italy

Objective

Promote a circular bioeconomy model through territorial regeneration and environmental protection, developing bio-based, biodegradable, and compostable products

Mature, generating stable results

- Novamont as leader and investor
- Versalis as Joint venture partner and owner
- SPRING Cluster, Re Soil Foundation (NGO) as partners
- Italian and EU regulators as policy makers
- Farmers & Local communities as producers

	Implementation		
Step		Period	
1	Establishment & industrial reconversions	1990 – 2012	
2	Expansion of biopolymer and bioproduct plants	2011 – 2018	
3	New technologies, partnerships & acquisitions	2016 – 2023	
4	Full integration under Versalis & scaling R&D	2023 – 2025 ╒	

	Indicators	
KPI	Unity	Current values
CO ₂ reduction	tCO ₂ e	240,000
Regenerated sites	%	96%
Circularity index	% turnover	66%
Organic waste collected	kg/capita/year	88

Key	aspects

	WG alignment	Promotes EU circular bioeconomy goals, soil health, and low-carbon transitions
	Economic impact	 Generates €285 million turnover in 2024, leverages €800 million investment, and creates jobs and agricultural partnerships
CO ₂	CO₂e impact	 Achieves 240 kilotons of CO₂ equivalent decarbonization from Mater-Bi and Origo-Bi, while biobased BDO delivers a 50% lower footprint
	Innovation	 Develops 13 proprietary technologies, manages 137 patent families, and drives over 1,600 patents/applications in bioplastics and bioproducts
((Risks	 Key risks include regulatory barriers limiting bio-based sector scaling and challenges in upscaling innovative processes
	Scalability	Demonstrates a replicable circular model that connects agriculture, industry, and waste management, and replicates across the EU and globally

From CO2 to protein

Novonesis, Denmark

Objective

Electrochemical processes to convert CO2 into acetate and transformation into protein through fermentation, for human consumption

Under implementation

Stakeholders

- Novonesis as project leader for microbial engineering
- **Topsoe** for expertise in catalysis and process technologies
- Bill & Melinda Gates Foundation, Novo Nordisk Foundation for funding
- Northwestern University, Aarhus University & Novo Nordisk Foundation, University of Copenhagen, Wageningen University, for academic research

novonesis

	Implementation		
Step Period			
	Proof of Concept	2023 – 2025	
2	Optimization of production and integrated pilot process	2025 – 2027 ╒	
3	Demo plant design, construction & regulatory approval	2027 - 2029	
4	Industrial Implementation	2029	

Indicators		
KPI	Unity	Current values
CO ₂ utilized	t/day	TBD¹
Project budget planned	€	27
Pilot fermentation scale	Liters fermenters	

		Key aspects
	WG alignment	 Showcases a technological solution that offers a near-term pathway to cut emissions, enhances food security, and demonstrates private-sector leadership in delivering Paris Agreement-aligned, nature-positive solutions
	Economic impact	 Targets competitive protein costs (< US\$ 3–5/kg) de-risked through € 27m in foundation funding, enabling positive NPV and 15–20% IRR potential once scaled
CO ₂	CO₂e impact	Reduces emissions and avoid the need for agricultural land use
	Innovation	 Couples CO₂-to-acetate conversion (via electrochemistry and gas fermentation) with engineered microbes that grow on acetate to produce food proteins, creating land-free, scalable nutrition from emissions
((1)	Risks	 Key risks include scale-up to target cost and quality, integration of complex processes, regulatory approval of novel foods, consumer acceptance, and reliable access to clean CO₂ and low-cost renewable energy
	Scalability	 Demonstrates a replicable model that, if scaled, could leverage the annual CO₂ output from the cement industry in Egypt to enable protein production sufficient to feed up to 1

billion people per year

Healthier feeds at lower cost

Novonesis, Denmark

Objective

Improve poultry feed efficiency and farm economics with a biosolution that removes bacterial cell debris in the gut, enhancing nutrient absorption and reducing feed required

Mature, generating stable results

Stakeholders

- Novonesis as technology developer and supplier
- Poultry farmers as adopters and direct beneficiaries (cost & productivity)
- Feed manufacturers as integrators of the additive in rations
- Academia & research institutions as validation/knowledge partners
- Public sector/regulators as approval and market-enabling bodies

novonesis

Implementati	ion
Step	Period
R&D and formulation of biosolution	Completed V
On-farm validation of feed efficiency	Completed
Commercial deployment with farmers & feed mills	Mature / globa rollout
Monitoring, reporting & policy engagement	Ongoing $ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$

Indicators		
<u> </u>	Unity	Current values
₂ avoided t	:CO ₂ e/year	~4,200,000
ed efficiency (% more product	+3% output with same feed.

Key aspects

	WG alignment	 Showcases a technological solution that delivers fast, scalable mitigation by reducing feed use per kilogram of chicken; supports Paris-aligned goals and SB COP's biosolutions agenda
	Economic impact	 Represents up to 70% of farm cost; improves productivity by 3% with the same feed, lowering costs and increasing margins
CO ₂	CO₂e impact	 Avoids around 4.2 million tons of CO₂ equivalent per year by reducing feed production emissions
B	Innovation	 Introduces a unique gut-health mode that removes bacterial cell debris to improve nutrient uptake, and builds a strong innovation engine with 11% of sales invested in R&D and about 30% of sales from products launched in the last five years
((Risks	 Key risks include regulatory acceptance, variable on-farm performance, and integration challenges at feed mills
	Scalability	 Demonstrates a replicable model that expanded globally through feed makers and poultry integrators, could unlock broader biosolutions potential equivalent to 4.3 billion tons of CO₂

The hot topic of cold wash

Novonesis, Denmark

Objective

Enable effective cold-water laundry with enzyme biosolutions that cut surfactants and energy use while maintaining (or improving) cleaning performance

Mature, generating stable results

Stakeholders

- Novonesis as technology developer and supplier
- **Detergent producers & retailers** as formulators/offtakers integrating enzymes
- Consumers/households as end-users benefiting from cold-wash savings
- Academia & research institutions as validation and knowledge partners
- Public sector/regulators as approval and market-enabling bodies

novonesis

	Implementation		
Ste	p	Period	
1	R&D and formulation of enzymatic biosolutions	Completed	
2	Co-development & on-wash validation with detergent brands	Completed	
3	Commercial rollout in cold-wash detergents	Mature, global availability	
4	Monitoring impact & policy engagement for cold-wash adoption	Ongoing (a)	

Indicators		
KPI	Unity	Current values
CO ₂ avoided	MtCO ₂ e/yr	3.3
Electricity saved	•	12
Chemicals avoided	Tons/year	170,000
Population reached	% world pop	~50%

Key aspects

		They disposes
	WG alignment	 Showcases a technological solution that delivers fast mitigation via lower wash temperatures and reduced chemicals, supporting Paris goals and SB COP priorities on biosolutions
	Economic impact	 Lowers energy bills from cold washing, achieves up to 30% surfactant reduction with the same high performance, and enables cost-efficient formulations
CO ₂	CO₂e impact	 Avoids 3.3 million tons of CO₂ equivalent per year and saves 12 million MWh; switching from 40 °C to 30 °C in Europe would cut an additional 2.7 million tons of CO₂ equivalent per year
	Innovation	 Introduces enzymes (e.g., Pristine®, Luminous®) that enable cold-wash cleaning, malodor removal, and brightness; invests 11% of sales in R&D, with around 30% of sales from products launched in the last five years
	Risks	 Key risks include regulatory acceptance of new additives, consumer behavior linked to temperature habits, and variable performance across water and washer conditions
	Scalability	 Demonstrates a replicable model that can be adopted broadly with major brands and enable co-developed solutions to drive the next step in the decarbonization journey

Less waste, more taste

Novonesis, Denmark

Objective

Reduce food waste in bread and yogurt by extending shelf life: enzymes keep bread moist/elastic longer, and bioprotective cultures inhibit mold/yeast in yogurt—maintaining fresh taste with fewer discards

Mature, generating stable results

Stakeholders

- Novonesis as technology developer and supplier
- Bakeries, dairy brands & retailers as formulators/off-takers integrating the biosolutions
- Consumers & retail as end-users benefiting from fresher products and less waste
- Academia / research institutions as validation and knowledge partners
- **Public sector / regulators** as approval and marketenabling bodies

novonesis

Implementation		
Ste	р	Period
1	R&D and formulation	Completed
2	Co-development & on-product validation with brands	Completed <
3	Commercial rollout across markets	Mature, global availability
4	Monitoring, communication & replication	Ongoing (

	Indicato	ors
KPI	Unity	Current values
Yogurt saved	Tons	>1,000,000
Shelf-life extension	Days	Up to 30 days
Industries using biosolutions	#	>30

Key aspects		
	WG alignment	 Showcases a technological solution that tackles food loss by keeping products fresh longer, advancing bioeconomy and nature-based solutions priorities, and improving Paris-aligned efficiency
	Economic impact	 Reduces spoilage across supply chains, increases sell-through with the same inputs, and improves margins for bakeries and dairies
CO ₂	CO₂e impact	 Reduces embodied emissions from production and logistics by lowering food waste across supply chains
	Innovation	 Applies enzymes that prevent starch staling in bread and beneficial bacteria that inhibit mold and yeast in yogurt; strengthens the R&D engine by investing 11% of sales in 2024
	Risks	 Key risks include regulatory acceptance, variability by product and processing, and behavioral changes across supply chains
	Scalability	Demonstrates a replicable model that could scale solutions across baked goods and dairy segments to broaden waste reduction

Siemens, Brazil

Objective

Innovation program that enables scalable, resilient innovation for the Amazon using digital and tech solutions to cut CO₂, improve circularity and energy efficiency, and boost local economies

Under implementation

Stakeholders

- Siemens Brazil (BUs & Mendix) as convener, funder and technology provider
- **Innovation partner** as operator of the open ecosystem platform
- Challenge owners as beneficiaries and codesigners of solutions
- Solution providers (SMEs, startups, academia) as PoC developers and implementers
- Indigenous peoples & local/traditional communities as priority end-users/beneficiaries

SIEMENS

	Implementation		
Step		Period	
1	External mapping of Amazon stakeholders	01/25 – 05/25	
2	Challenge pre-selection & Siemens BU matchmaking	05/25 – 06/25	
3	Ideation workshops & PoC selection	06/25 – 07/25	
4	PoC development + Mendix eco- system platform; Demo Day & launch	07/25 – 10/25 ╒	

	Indicators	
KPI	Unity	Current values
Entities mapped	#	50 organizations
Matches made	#	6 interviews/ matches
POCs selected	#	3 projects
Seedling survival ¹	% improvement	≥30%

Key aspects

	WG alignment	 Advances decarbonization, circularity and energy efficiency while strengthening local innovation ecosystems in the Amazon bioeconomy
	Economic impact	 Reduces search and coordination costs, unlocks local business opportunities, and scales connections between challenge owners and tech providers via the platform
CO ₂	CO₂e impact	 Avoids deforestation and cuts emissions by improving productive-chain efficiency and delivering restoration outcomes through PoCs
	Innovation	 Builds an open ecosystem platform (Mendix) and pilot digital/automation PoCs—resilient seedling production, nanofactory digitalization, and Brazil-nut processing automation
	Risks	 Key risks include low digital adoption, scarce skilled labor, regulatory complexity, infrastructure gaps, and policy delays, mitigated with capacity-building and clear governance
	Scalability	 Scales across sectors and geographies through a dedicated platform operator and reuses PoC components to accelerate rollout

External links: SIEMENS 76

Long-term bio

UFMG, Brazil

Objective

Microbial-based biological solution to reduce post-harvest losses in fruits and flowers, extending their shelf life and commercial viability in a sustainable way

Implemented, generating first results

- Federal University of Minas Gerais
 (ICA/UFMG) as academic research base and
 initial R&D
- FINEP & FAPEMIG (innovation agencies) for non-dilutive grants and funding support
- Partner agribusiness corporations for codevelopment, pilot testing, and commercialization route

Implementation			
Step		Period	
1	Isolation, selection, and characterization of microorganisms	2021 – 2022	⊘
2	In vitro banana plantlet development tests	2023	V
3	Field tests on hydrangeas for post-harvest longevity	2023 – 2024	V
4	Formulation optimization, pilot-scale tests, regulatory registration and scale-up prod.	2025 – 2027	~

Indicators		
KPI	Unity	Current values
Increase the shelf life of 'Prata' bananas	day	+5 compared to control group
Increase the longevity of cut flowers	day	+3 in survival time of inflorescences
Reduce senescence in banana plantlets	week delay	+2 compared to control group

Kev	aspects

		7 1
	WG alignment	 Increases farmer profits by reducing post-harvest losses, improve food security, and reduce food waste and the use of agricultural chemicals in a way that strengthens both economic and environmental sustainability
	Economic impact	 Tackles 30–50% of losses, increasing farmer revenue, offer a cost-effective alternative to cold chain solutions, and enable access to distant markets through preserved product value
CO2	CO₂e impact	• Reduces CO_2e by decreasing food waste, avoid landfill decomposition, and limit the unnecessary use of resources such as water and energy
	Innovation	 Uses microorganisms to modulate plant physiology via ethylene inhibition, provide a sustainable, safe, and effective alternative to chemicals such as 1-MCP, supported by PhD-level validation
((1)	Risks	 Key risks include high R&D investment needs, logistical challenges for distribution, complex and costly regulatory approval process, farmer adoption rate and challenges in scaling up production
	Scalability	 Applies the technology to a wide range of fruits and flowers, reduce food waste at scale while optimizing natural resource use, and decrease losses throughout the entire supply chain with high potential for industry adoption

Jornada Amazônia platform

Vale, Brazil

Objective

Open innovation platform and programs (Genesis, Synapse, Synergy) to foster Amazon bioeconomy by mobilizing talent, creating startups, and attracting industry/investors

Mature, generating stable results

Stakeholders

- Vale as convener, program operator and ecosystem builder
- Fundo Vale, Bradesco, Santander, Itaú
 Unibanco, CLUA, Good Energies/Porticus,
 Fundação Itaúsa as grant funders
- Startups & SMEs as participants, solution developers and beneficiaries
- Investors (VCs, angels, CVCs) as follow-on capital and mentors

Implementation		
Step		Period
1	Multi-program rollout	05/23 – 12/25
2	Mapping & matchmaking	01/25 – 07/25
3	PoC development & open- platform build on Mendix	07/25 – 10/25 🗸
4	Amazon PoCs Demo Day & ecosystem platform launch	10/25 – e ongoing

Indicators		
KPI	Unity	Current values
Talents trained	#	2,071
Startups in Synapse	#	141
	#	74
Platform readiness	% features	60%

Key aspects

	WG alignment	 Builds standing-forest economy by accelerating Amazon bioinnovation and market linkages across priority states
	Economic impact	 Expands the startup pipeline (141 in Synapse), qualifies 74 for investor panels, and trains 2,071 talents (56% women), fostering jobs and strengthening local value chains
CO ₂	CO₂e impact	 Does not directly quantify impact; solutions target land-use drivers, restoration success, circularity, and efficiency, supporting Brazil's decarbonization
	Innovation	 Implements challenge-driven programs and an open matchmaking platform to connect challenge owners, technology providers, and capital (Micro CVC)
	Risks	 Key risks include limited early-stage philanthropic capital and low investment appetite, which may slow growth and scaling of forest-based innovations
	Scalability	 Operates under a three-year design with donors; the platform model and PoCs enable replication and cross-sector scaling across the Amazon

External links: Jornal-da-Amazonia

Renewable materials: decoupling the use of resources from our business growth *Volkswagen, Brazil*

Objective

Produce parts of vehicles using polyethylene from sugar cane in order to reduce carbon footprint and fossil fuel dependance

Mature, generating stable results

Stakeholders

- Volkswagen Truck & Bus (VWTB) as project lead, investor and integrator
- Component suppliers (SMEs) as manufacturers of renewable-HDPE tanks and process innovators
- Large corporate partners as testing/industrialization collaborators in the supply chain
- Academia & research institutions as validation/technical partners
- Public sector/regulators (PROCONVE) as emissions and safety compliance authorities

Implementation		
Step		Period
1	Part prospection & feasibility for renewable HDPE	06/22 – 11/22
2	Pilot manufacturing & lab tests	11/22 – 07/23
3	On-vehicle durability validation	02/23 – 05/24
4	Product implementation & rollout to production	11/24 – 12/24 🗸

Indicators		
KPI	Unity	Current values
CO ₂ reduction	tCO₂e/year	3,680
Productivity rate	tanks/hour	12–15
Cost savings ¹	US\$/year	~1,000,000

Key aspects	Kev	/ aspects
-------------	-----	-----------

	WG alignment	 Replaces fossil plastics with bio-based HDPE, advances the circular bioeconomy, and supports Brazil's NDC and Climate Law compliance
	Economic impact	 Delivers higher extrusion throughput (12–15 tanks per hour), lowers energy and operational costs, and achieves projected savings of about US\$ 1 million per year at current volumes
CO ₂	CO₂e impact	 Avoids around 3,680 tons of CO₂e per year through raw-material substitution and process gains
	Innovation	 Introduces the first VWTB AdBlue® tank in renewable HDPE², maintains performance and emissions compliance, and earns recognition as a World Circular Economy Forum best practice
((1)	Risks	 Key risks include bio-based HDPE supply and cost volatility, long-term durability qualification, and certification requirements across new parts
	Scalability	Expands renewable materials to other components, enabling progressive decarbonization across vehicle platforms

External links: Ebook-economia-circular-industria-melhores-praticas

Annexes

Annex A – List of Acronyms

- · ABS Access and Benefit Sharing
- AI Artificial Intelligence
- ANP Brazilian National Petroleum Agency
- ARR Afforestation, Reforestation, and Revegetation
- BDO 1,4-Butanediol (biobased chemical)
- BIOFAT Biofuels from Algae Technologies (EU FP7 project)
- BIOCLUSTER Follow-up cluster initiative from BIOFAT
- BU Business Unit / Biodiversity Unit (context-dependent)
- CAPEX Capital Expenditure
- CDP Carbon Disclosure Project
- CDR Carbon Dioxide Removal
- CO₂ Carbon Dioxide
- CO₂e / tCO₂e Carbon Dioxide equivalent / tons of CO₂ equivalent
- COP Conference of the Parties
- COSMOS Cosmetic Organic and Natural Standard
- CRA Agribusiness Receivables Certificate, Brazil
- CVC Corporate Venture Capital
- Ecocert International organic certification body
- ERW Enhanced Rock Weathering
- ETE Wastewater Treatment Plant, Brazil
- EU European Union
- EUDR European Union Deforestation Regulation
- FP7 Seventh Framework Programme (EU R&D program)
- FPIC Free, Prior and Informed Consent
- FSC Forest Stewardship Council
- GBF Global Biodiversity Framework
- GHG Greenhouse Gases
- GRI Global Reporting Initiative
- HDPE High-Density Polyethylene
- ICCPR International Covenant on Civil and Political Rights
- IDEAL Industrial Exploitation of microalgae
- IoT Internet of Things
- IP Intellectual Property
- IPLCs Indigenous Peoples and Local Communities
- IRR Internal Rate of Return

- KPI Key Performance Indicator
- LCA Life Cycle Assessment
- LP Limited Partner (venture capital context)
- MCP / 1-MCP 1-Methylcyclopropene (synthetic plant growth regulator)
- MEG Monoethylene Glycol
- MEL Monitoring, Evaluation and Learning (framework)
- MPG Monopropylene Glycol
- MRV Measurement, Reporting and Verification
- MSME Micro, Small and Medium Enterprise
- NDC Nationally Determined Contribution (Paris Agreement)
- NGO Non-Governmental Organization
- NPV Net Present Value
- OHS Occupational Health & Safety
- PCSAF Payment for Conservation Services in Agroforestry
- PE Polyethylene
- PES Payments for Ecosystem Services
- PoC Proof of Concept
- PPP Public-Private Partnership
- R&D Research and Development
- R\$ Brazilian Real (currency)
- RSPO Roundtable on Sustainable Palm Oil
- SB COP Sustainable Business COP
- SBTi Science-Based Targets initiative
- SBTN Science-Based Targets for Nature
- SDGs Sustainable Development Goals
- SISGEN Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado (Brazil)
- SME Small and Medium Enterprise
- tCO₂e tons of Carbon Dioxide equivalent
- TEEB The Economics of Ecosystems and Biodiversity
- TNFD Taskforce on Nature-related Financial Disclosures
- UoP Use of Proceeds
- VC Venture Capital
- WG Working Group

Annex B – Disclaimer

The information presented in this booklet is the sole responsibility of the institutions that submitted the cases. All case descriptions reflect the information shared directly by the applicants.

The primary source for the evaluations described herein was the submitted cases; however, in certain instances, additional publicly available information from websites and/or official documents was consulted.

Where specific information was not provided by the applicants, the Working Group applied its best judgment to interpret missing parts, taking into account the context of each case.

